期刊文献+

关于2×2分块矩阵秩扰动的界

Upper and Lower Bounds for the Ranks of Perturbation Matrices on a Class of 2×2 Matrices
下载PDF
导出
摘要 研究一类2×2分块矩阵秩的不等式以及一个含参变量X的矩阵函数秩的等价条件。利用矩阵Schur补的技巧及矩阵广义逆的特性,首先给出2×2分块矩阵M=(ACB0)秩的结果,随后讨论了在一定条件下2×2分块矩阵M_X=(ACBX)秩的上下界,最后获得矩阵函数A-BXC的秩与X选取无关的等价条件。 The inequalities of the ranks on a kind of 2 × 2 partitioned matrices and the equivalent conditions on ranks of matrix function are researched.Firstly, the result of the rank of the matrix M=(C^A O^B) is obtained by using techniques of the Schur complement and the properties of generalized inverse of matrix. Secondly, the upper and lower bounds for ranks of the perturbation matrix Mx=(C^A X^B) are studied under certain conditions. Finally, equivalent conditions are given when the rank of A -BXC and X are irrelevant.
出处 《咸阳师范学院学报》 2017年第4期32-36,共5页 Journal of Xianyang Normal University
基金 国家自然科学基金项目(11471200)
关键词 SCHUR补 广义逆 分块矩阵 Schur complement generalized inverse rank partitioned matrix
  • 相关文献

参考文献3

二级参考文献21

  • 1阚永志,周绍华.谈秩为1的方阵的特征值的求法[J].辽宁工学院学报,2005,25(4):278-280. 被引量:5
  • 2詹仕林.关于矩阵的迹的不等式[J].韩山师范学院学报,2005,26(6):8-10. 被引量:2
  • 3杨桂元.秩等于1的矩阵的有关性质[J].大学数学,2006,22(2):127-128. 被引量:7
  • 4BEASLEY L B. Linear operator which preserve pairs on which the rank is additive[J]. J Korean Soc Ind Appl Maths, 1998,2(2):27-36.
  • 5BEASLEY L B, LEE S C, SONG S Z. Linear operators that preserve pairs of matrices which satisfy extreme rank properties[J].Linear Algebra Appl, 2002,350:263-272.
  • 6BELL J, SOUROUR A R. Additive rank-one preserving mappings on triangular matrix algebras[J]. Linear Algebra Appl,2000,312:13-33.
  • 7BRESAR M, SEMRL P. Mappings which preserve idempotents, local automorphism, and local derivation[J]. Canad J Math,1993,45:483-496.
  • 8GUTERMAN A. Linear preservers for matrix inequalities and partial orderings[J]. Linear Algebra Appl, 2001,331:61-81.
  • 9GUTERMAN A, LI C L, SEMRL P. Some general techiques on linear preserver problems[J]. Linear Algebra Appl, 2000,315:61-81.
  • 10KUZMA B. Additive mappings decreasing rank one[J]. Linear Algebra Appl, 2002,348:175-187.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部