摘要
Wigner函数在对量子体系状态的描述方面具有重要的意义。讨论了具有自旋量子态的Wigner函数。在对易空间中Wigner函数所服从的星本征方程,给出了非对易空间中Pauli方程的Hamiltonian函数,利用星本征方程(Moyal方程)计算了非对易空间中Pauli方程具有矩阵表示形式的Wigner函数及其能级。
The Wigner function is of great importance in describing the state of the quantum sys- tem. This paper discusses the Wigner function with spin quantum state, and gives out the Hamiltonian function of Pauli equation in noncommutative space for the Moyal equation which is obeyed by Winger function in commutative space, as well as uses the Moyal quation to calculate the Wigner function and its energy level with matrix representation of Pauli equation in noncommutative space.
出处
《咸阳师范学院学报》
2017年第4期48-52,共5页
Journal of Xianyang Normal University
基金
国家自然科学基金项目(11465018)
陕西省基础教育重大招标课题(ZDTK1503-1)