期刊文献+

机械球磨法制备纳米TATB及其表征 被引量:6

Characterization of nano TATB fabricated by mechanical milling methodology
下载PDF
导出
摘要 采用高能机械球磨法制备出平均粒径为58.1 nm的纳米TATB。利用SEM分析表征了纳米TATB的微观形貌,并统计了纳米TATB的粒度分布。利用XRD、IR和XPS表征了纳米TATB的晶型、分子结构和表面元素等。采用DSC和DSC-IR联用系统对纳米TATB的热分解活化能和热分解产物进行了分析。结果表明,纳米TATB的表观热分解活化能(ES=341.2 k J/mol)相比原料TATB(ES=354.4 k J/mol)降低了13.2 k J/mol,说明纳米TATB的反应活性更高。纳米TATB的主要分解产物为CO_2,同时伴有一定量的N_2O和NO_2生成。热感度实验表明,纳米TATB的5 s爆发点(T5s)高于原料TATB的T5s,说明纳米TATB的热稳定性更高。 TATB nanoparticles with size of 58.1 nm were fabricated upon a high energy milling. Micron morphology of nano- sized TATB was shown in SEM images, and particle sizedistribution of nano TATB was calculated via measuring the specific sizes of -500 nm for the imaged partieles.XRD ,IR, and XPS analyses were employed to investigate the crystal phase, molecular structure, and surface elements of the milled samples.The DSC curves were collected at different heating rates and the activation energy (Es ) of thermolysis of raw and nano TATB were calculated by Starink method.The result indicated that Es of nano TATB was 341.2 kJ/ mol and it was 354.4 kJ/mol for raw TATB, i.e.aetivation energy of TATB decreased by 13.2 kJ/mol after milling. It means that the nano TATB processed is of greater thermal reactivity than the raw TATB.Decomposition products of nano TATB were determined by DSC-IR analysis.One of the main products was CO/, which was companying with minor N2O and NO2.Thermal sensitivity of the raw and nano TATB were studied with 5 s bursting point ( T5s ) tests, and the results showed the T5s of nano TATB was higher than that of raw TATB.This implied that nano TATB was of higher thermal stability than raw TATB.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2017年第4期471-475,共5页 Journal of Solid Rocket Technology
基金 国家自然科学基金(51206081)
关键词 纳米炸药 TATB 活化能 分解产物 爆发点 nano explosives TATB activation energy decomposition products bursting points.
  • 相关文献

参考文献2

二级参考文献26

  • 1刘子如,阴翠梅,刘艳,范夕萍,赵凤起.RDX和HMX的热分解II.动力学参数和动力学补偿效应[J].火炸药学报,2004,27(4):72-75. 被引量:38
  • 2宋会彬,刘云飞,姚维尚.含CL-20的NEPE固体推进剂的性能[J].火炸药学报,2006,29(4):44-46. 被引量:21
  • 3丁黎,赵凤起,李上文,胥会祥,李勇宏,仪建华.含CL-20的NEPE推进剂的燃烧性能[J].含能材料,2007,15(4):324-328. 被引量:9
  • 4Boggs T L.Fundamentals of solid-propellant combustion[M].中译本(上册),北京:宇航出版社,1991:110-168.
  • 5Brill T B,Brush P J.Condensed phase chemistry of explosives and propellants at high temperature:HMX,RDX and BAMO[J].Phil Trans R Soc.1992:377-385.
  • 6Timken M D,Chen J K,Brill T B.Thermal decomposition of energetic materials 37.SMATCH/FT-IR Spectroscopy[J].Applied Spectroscopy,1990,44(4):701-706.
  • 7Farber M,Srivastava R D.Thermal decomposition of HMX[C] // 16th JANNAF Combustion Meeting,Eng:CPIA Pub 308,1979:723-729.
  • 8Goshgarian B B.The thermal decomposition of RDX and HMX,AFRPL-TR-78-76[R].California:AFRPL Pub,1978.
  • 9Kimura J,Kubota N.The thermal decomposition history of HMX[J].Prop Exp Pyro,1980,5:1-8.
  • 10Cosgrove J D,Owen A J.The thermal decomposition of 1,3,5-trinitro hexahydro 1,3,5-triazine (RDX) Part Ⅰ:The products and physical parameters[J].Combust Flame,1974,22:13-18.

共引文献36

同被引文献94

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部