期刊文献+

基于码流的软件控制FPGA故障注入系统

A Software Controlled FPGA Fault Injection System Based on Bitstream
下载PDF
导出
摘要 基于静态随机存储器的现场可编程逻辑门阵列应用于航天电子系统时,易受到单粒子翻转效应的影响,存储数据会发生损坏。为评估器件和电路在单粒子翻转效应下的可靠性,提出一种基于TCL脚本控制的故障注入系统,可在配置码流层面模拟单粒子翻转效应。介绍了该故障注入系统的实现机制和控制算法,并将该软件控制方法与传统硬件控制方法进行对比分析。设计了一种关键位故障模型,从设计网表中提取关键位的位置信息,缩小了故障注入的码流范围。在Virtex-5开发板XUPV5-LX110T上的故障注入实验表明,该故障注入系统能有效模拟单粒子翻转效应,与传统随机位故障注入相比,关键位故障注入的故障率提高了近5倍。 SRAM-based field programmable gate arrays( FPGA) are susceptible to single event upset( SEU) when they are used in aerospace electronic systems,and as a result,the stored data is always corrupted. In order to evaluate the reliability of FPGA device and circuit under the SEU,a fault injection system based on TCL script was proposed to simulate the behavior of SEU upon the configuration bitstream. The implementation mechanism and control algorithm of the proposed fault injection system were introduced,and the software controlled method was compared with the traditional hardware controlled method. In addition,an essential-bit fault model was proposed to extract the position information of essential bits from the design netlist,which had reduced the bitstream range of fault injection. Experiment on Virtex-5 development board XUPV5-LX110 T showed that the software controlled fault injection system could simulate the SEU effectively,and the failure rate of essential bit fault injection was improved by nearly 5 times compared with that of the traditional random bit fault injection system.
出处 《微电子学》 CSCD 北大核心 2017年第4期553-556,561,共5页 Microelectronics
关键词 单粒子翻转 现场可编程逻辑门阵列 故障注入 TCL脚本 关键位 Single event upset FPGA Fault injection TCL script Essential bit
  • 相关文献

参考文献1

二级参考文献15

  • 1Ostler P S, Caffrey M P, Gibelyou D S, et al. SRAM FPGAreliability analysis for harsh radiation environments[J]. IEEETransactions on Nuclear Science, 2009,56(6): 3519-3526.
  • 2Hu C and Zain S. NSEU mitigation in avionics applications[R]. XILINX XAPP10T3 (vl.O), 2010.
  • 3Normand E. Single-event effects in systems using commercialelectronics in harsh environments[C]. IEEE Nuclear andSpace Effects Conference Short Course, 1994: V-l.
  • 4EASA Safety Information Bulletin. Single event effects onaircraft systems caused by cosmic rays[R]. EASA SIB No:2012-10.
  • 5Charmichael C and Tseng C W. Correcting single-eventupsets in Virtex-4 FPGA configuration memory[R]. XILINXXAPP1088 (vl.O), 2009: 1-20.
  • 6Bryan M, LaBel K, Reed R, et al" Recent radiation damageand single event effect results for candidate spacecraftelectronics[C]. Proceedings of the IEEE Radiation EffectsData Workshop, Vancouver, BC, 2001: 82-99.
  • 7Bryan M, LaBel K, and Buchner S. Compendium of recentsingle event effects results for candidate spacecraft electronicsfor NASA[C]. Proceedings of the IEEE Radiation EffectsData Workshop, Tucson, AZ, 2008: 11-20.
  • 8Pagliarini S, Kastensmidt F, and Entrena L. Analyzing theimpact of single-event-induced charge sharing in complexcircuits[J]. IEEE Transactions on Nuclear Science, 2011,58(6): 2768-2775.
  • 9Schmidt A G and French M. Fast lossless image compressionwith radiation hardening by hardware/software co-design onplatform FPGAs[C]. Proceedings of the IEEE 24thInternational Conference on Application-Specific Systems,Architectures and Processors, Washington, DC, USA, 2013:103-106.
  • 10Shirazi M S, Morris B, and Selvaraj H. Fast FPGA-basedfault injection tool for embedded processors[C]. Proceedingsof the 14th International Symposium on Quality ElectronicDesign, Santa Clara, CA, 2013: 476-480.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部