期刊文献+

Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor-actuator networks 被引量:2

Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor-actuator networks
下载PDF
导出
摘要 A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy. A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期7-16,共10页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)
关键词 distributed parameter systems time-dependent spatial domains mobile actuator-sensor networks Lyapunov stability distributed parameter systems, time-dependent spatial domains, mobile actuator-sensor networks,Lyapunov stability
  • 相关文献

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部