期刊文献+

基于L2范数最小估计的无人机飞控系统故障检测 被引量:2

Fault detection of unmanned aerial vehicle flight control system based on optimal estimation of the L2-norm
原文传递
导出
摘要 为了实现无人机飞行控制系统的快速在线故障检测,提出一种基于L2范数最小估计的无人机非线性飞行控制系统快速故障检测方法。建立无人机飞行控制系统的非线性故障模型,并将未知输入的L2范数最小估计值作为残差评价函数,对系统故障进行检测。在针对线性离散时变系统故障检测方法研究的基础上,利用Krein空间投影实现残差评价函数的递推计算以减小故障检测计算量。以无人机升降舵及速率陀螺故障检测为例,对算法进行仿真试验验证。试验结果表明:该方法可以快速有效的实现无人机飞行控制系统故障检测,为无人机的安全飞行提供可靠的保障。 In order to realize the rapid online failt detection of unmanned aerial vehicle (UAV) flight control system, a fault detection approach based on optimal estimation of the L2-norm was proposed to the fault detection (FD) of UAV nonlinear flight control system. The nonlinear fault model of UAV flight control system was established, and an optimal estimation of the L2-norm of the unknowninputs was found to be the evaluation function for FD. On the foundation of the approach for linear discrete time-varying systems, the projection in Krein space was applied to calculate the evaluation function recursively, and thus the heavy online computational burden could be solved. The FD for UAV elevator and rate gyros was taken as an example to demonstrate the effectiveness of the proposed method. The results showed that the faults of the UAV flight control system could be detected rapidly through the proposed approach, and the safety of UVA could be guaranteed reliably.
出处 《山东大学学报(工学版)》 CAS 北大核心 2017年第5期89-95,109,共8页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61333005 61421063) 山东省泰山学者优势特色学科人才团队资助项目
关键词 无人机 非线性系统 故障检测 未知输入 最小估计 unmanned aerial vehicle nonlinear systems fault detection unknown inputs optimal estimation
  • 相关文献

参考文献1

二级参考文献10

  • 1Philippe G, Andres M. The European ADDSAFE project: Industrial and academic efforts towards ad- vanced fault diagnosis [J]. Control Engineering Prac- tice, 2014, 31: 109-125.
  • 2Bateman F, Noura H, Ouladsine M. Fault diagnosis and fault-tolerant control strategy for the aerosonde UAV [J]. IEEE Transactions on Aerospace and Elec- tronic System, 2011, 47(3) :2119-2137.
  • 3Hajiyev C, Soken H E. Robust adaptive Kalman fil- ter for estimation of UAV dynamics in the presence of sensor/actuator faults [ J ]. Aerospace Science and Technology, 2013(1) :376-383.
  • 4Hadi A M, Chamseddine A, Zhang Y. Experimental test of a two-stage Kalman filter for actuator fault de- tection and diagnosis of an unmanned quadrotor heli- copter[J]. Journal of Intelligent and Robotic Systems, 2013, 70:107-117.
  • 5Van Eykeren L,Chu Q P. Sensor fault detection and isolation for aircraft control systems by kinematic relations [ J ]. Control Engineering Practice, 2014, 31(1) :200-210.
  • 6Hansen S, Blanke M. Diagnosis of airspeed measure ment faults for unmanned aerial vehicles [J~. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1) :224-239.
  • 7Peng L, Erik V K, Bin Y. Actuator fault detection and diagnosis for quadrotors [C] // International Mi- cro Air Vehicle Conference and Competition. The Netherlands: Delft University of Technology, 2014, 58-63.
  • 8Hamersma H A, Schalk E P. Longitudinal vehicle dynamic control for improved vehicle safety [J]. Jour- nal of Terramechanics, 2014,54 : 19-36.
  • 9Jing Y, Xu J, Zhou Y, etal. Optimal nonlinear esti- mation for aircraft flight control in wind shear [C]// American Control Conference. USA: IEEE, 2009: 3813-3818.
  • 10周东华,刘洋,何潇.闭环系统故障诊断技术综述[J].自动化学报,2013,39(11):1933-1943. 被引量:108

共引文献15

同被引文献26

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部