期刊文献+

基于等价空间的无人机飞行控制系统故障检测 被引量:8

Parity space-based fault detection for unmanned aerial vehicle flight control systems
原文传递
导出
摘要 无人机(unmanned aerial vehicle,UAV)飞行控制系统的故障检测,对于保障无人机的飞行安全具有重要意义。等价空间方法具有残差与未知初始状态解耦的优势,但随着等价空间阶次的提高,其在线计算量显著增大。针对上述问题,提出一种基于等价空间的无人机非线性飞行控制系统快速故障检测方法。建立无人机飞行控制系统的非线性故障模型,在针对线性离散时变系统的等价空间故障检测方法研究的基础上,利用Krein空间投影来实现残差评价函数的递推计算以减小故障检测计算量。以无人机空速管及升降舵故障检测为例,对算法进行了仿真试验验证。试验结果表明,提出的方法可以实现无人机飞行控制系统的快速故障检测。 The fault detection (FD) for unmanned aerial vehicle (UAV) flight control system is of great significance to ensure the flight safety of UAV. The parity space approach has the advantage of the de, coupling of residual and unknown initial state. However, the increasing of parity order will lead to heavy computational task. Aiming at these problems, a modified parity space approach was put forward for the FD of UAV nonlinear flight control systems. The nonlinear fault model of UAV flight control system was established. On the foundation of parity space approach for linear discrete time-varying systems, the projection in Krein space was applied to calculate the evaluation function recursively, and thus the heavy online computational burden could be solved. The FD for UAV pitot tube and elevator was taken as an example to demonstrate the effectiveness of the proposed method. The results showed that the faults of the UAV flight control system could be detected rapidly through the proposed approach.
出处 《山东大学学报(工学版)》 CAS 北大核心 2017年第5期150-156,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61333005 61421063) 山东省泰山学者优势特色学科人才团队资助项目
关键词 无人机 非线性系统 故障检测 等价空间 unmanned aerial vehicle nonlinear systems fault detection parity space
  • 相关文献

参考文献4

二级参考文献32

  • 1Bagajewicz M J.Process plant instrumentation:Design and upgrade[M].Lancaster:Teehnomic Publishing Co,2001.
  • 2Bhushan M,Rengaswamy R.Design of sensor location based on various fault diagnostic observability and reliability criteria[J].Computers and Chemical Engineering,2000,24(2-7):735-741.
  • 3Chmielewski D J,Tasha P.Vasilios M.On the theory of optimal sensor placement[J].AIChE J,2002.48(5):1001-1012.
  • 4Yu D,Pansoo K,Dariusz C.et al.Optimal sensor distribution for variation diagnosis in multistation assembly processes[J].IEEE Trans on Robotics and Automation,2003,19(4):543-556.
  • 5Lohner R.Camelli F.Optimal placement of sensors for contaminant detection based on detailed 3D CFD simulations engineering computations[J].Int J for Computer-Aided Engineering,2005,22(3):260-273.
  • 6Lambert H E.Fault trees for locating sensors in process systems[J].Chemical Engineering Progress,1977,8(1):81-86.
  • 7Iri M.Aoki K,O'Shims E,et al.An algorithm for diagnosis of systcm failures in the chemical process[J].Computer and Chemical Engineering,1979,3(1-4):489-493.
  • 8Kramer M A.Palowitch B L.A rule-based approach to fault diagnosis using the signed directed graph[J].AICh E J,1987,33(7):1067-1071.
  • 9Chang C C,Yu C C.On-line fault diagnosis using the signed directed graph[J].Industrial & Engineering Chemistry Research,1990,29(7):1290-1298.
  • 10Mohindra S,Clark P A.A distributed fault diagnosis method based on digraph models:Steady-state analysis[J].Computer and Chemical Engineering,1993,17(2):193-209.

共引文献26

同被引文献98

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部