摘要
针对带有概率密度函数逼近误差的非高斯不确定奇异随机分布控制系统提出鲁棒故障诊断算法,在有模型不确定性和概率密度函数逼近误差的情况下设计故障诊断观测器估计故障信息。故障发生后,利用故障信息重构跟踪控制器使得输出概率密度函数仍能够跟踪期望概率密度函数。利用李雅普诺夫稳定性理论分析观测误差动态系统、闭环控制系统和跟踪误差动态系统的稳定性,相应的增益矩阵由线性矩阵不等式求解。仿真实例验证了算法对时变故障的有效性。
A tracking controller was constructed to make the output PDF track the desired one before fault occurring. A robust fault diagnosis and fault tolerant tracking control algorithm of non-Gaussian uncertain singular stochastic distribution control systems with probability density function approximation error was proposed. A fault diagnosis observer was designed to estimate the fault information with the disturbance of uncertainty and probability density function approximation error. When the fault occurred, the tracking controller was reconfigured to ensure that the post-fault output probability density function still tracked the desired distribution. The Lyapunov stability theory was used to analyze the stability of the observation error dynamic system, the closed-loop system and the tracking error dynamic system, the gain matrices were obtained by solving the corresponding linear matrix inequalities. An illustrated example was given to demonstrate the effectiveness of the proposed algorithm for time-varying fault.
出处
《山东大学学报(工学版)》
CAS
北大核心
2017年第5期238-245,共8页
Journal of Shandong University(Engineering Science)
基金
国家自然科学基金面上资助项目(61374128)
河南省高校科技创新人才支持计划资助项目(14HASTIT040)
郑州大学优秀青年发展基金资助项目(1421319086)
关键词
随机分布控制系统
不确定
奇异
故障诊断
容错控制
stochastic distribution control systems
uncertainty
singular
fault diagnosis
fault tolerant control