期刊文献+

基于人工鱼群优化SVM的声磁标签信号检测研究 被引量:3

The Research Based on the Improved Artificial Fish Swarm Algorithm and the SVM in the Acoustic Magnetic EAS
下载PDF
导出
摘要 为了提高声磁EAS系统的检测率,增强系统抗干扰性,研究了一种改进人工鱼群算法(IAFSA)与支持向量机(SVM)相结合的声磁标签信号检测算法(IAFSA-SVM).分析了支持向量机和传统人工鱼群算法的优势和缺陷,并提出了改进方案.实验表明:改进人工鱼群算法相比人工鱼群算法、遗传算法和粒子群算法收敛速度更快、寻优精度更高;IASFA-SVM算法相比传统的声磁标签检测算法体现出了检测率高、检测距离远和误报率低等优势,并且可以满足系统实时检测要求. In order to improve the detection rate of the acoustic magnetic EAS system, and enhance the anti- interference performance, the paper studied a new label detection algorithm that was the combination of the improved artificial fish swarm algorithm (IAFSA) and the support vector machine (SVM). An improved scheme was proposed after analyzing the strengths and weaknesses of the traditional AFSA and SVM. The ex- perimentalresults showed that the IASFA had the faster rate of convergence and the higher accuracy than AF- SA, the genetic algorithm and the particle swarm algorithm; The IASFA-SVM had the higher detection rate, the longer detective distance and the lower rate of false than the traditional magnetic label detection algorithm, and the IASFA-SVM also could meet the requirements of real-time detection.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2017年第4期35-38,83,共5页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金委-民航联合基金(U1433106) 2016年度河南省科技攻关计划项目(162102210162)
关键词 人工鱼群算法 支持向量机 声磁标签 检测率 实时检测 artificial fish swarm algorithm SVM label detection detection rate real-time detection
  • 相关文献

参考文献4

二级参考文献71

  • 1阎威武,常俊林,邵惠鹤.一种贝叶斯证据框架下支持向量机建模方法的研究[J].控制与决策,2004,19(5):525-528. 被引量:21
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3朱燕飞,伍建平,李琦,毛宗源.MISO系统的混合核函数LS-SVM建模[J].控制与决策,2005,20(4):417-420. 被引量:15
  • 4胡丹,肖建,车畅.尺度核支持向量机及在动态系统辨识中的应用[J].西南交通大学学报,2006,41(4):460-465. 被引量:4
  • 5Müller K R,Mika S,Ratsch G,et al.An introduction to kernel-based learning algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-202.
  • 6Cristianini N,Shawe-Taylor J.Kernel Methods for Pattern Recognition[M].Cambridge:Cambridge University Press,2004.
  • 7Suykens J A K.Nonlinear modeling and support vector machine[C]/ / IEEE Instrumentation and Measurement Technology Conference Budapest.Hungary:[s.n.],2001:21-23.
  • 8Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 9Mika S,Ratsch G,Weston B,et al.Fisher discriminant analysis with kernels.Neural Networks for Signal Processing IX[C].New York:IEEE Press,1999:41-48.
  • 10Zien A,Ratsch C C,Mike S,et al.Engineering support vector machine kernels that recognize translation initiation sites in DNA[J].Bioinformatics,2000,16:799-807.

共引文献2351

同被引文献27

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部