期刊文献+

基于Gentle Adaboost的多姿态人脸检测器结构研究

Detectors' Structure of Multiview Face Detection Based on Gentle Adaboost
下载PDF
导出
摘要 研究在多姿态人脸检测问题中,不同检测器组织结构及其性能差异。只探讨平面外旋转±90°的姿态空间,将其划分为5类姿态。首先训练单姿态检测器,通过提取扩展Haar-like特征,采用Gentle Adaboost算法,训练得到瀑布型检测器;然后对单姿态检测器进行组合构成多姿态分类器。主要对并行级联结构、并行级联附加姿态估计、金字塔结构和决策树结构4种组合结构进行实验对比,分析其在检测速度、检测率、误检数等性能指标上的差异。 This paper studies the different organization structures of the detectors and their performance differences in multi-view face detection problems.This paper only considers view space of ±90° out-of-plane rotation,and divides it into 5 categories.Firstly,train the single-view detector by extracting the extended Haar features,using Gentle Adaboost algorithm to train a cascade detector.Then,combine the single-view detectors to form multi-view detector.The paper mainly compares four structures:parallel cascade,parallel cascade with pose estimation,pyramid structure,decision tree structure,and analyze their differences of performances in detection speed,detection rate and number of false detections.
出处 《工业控制计算机》 2017年第8期61-63,共3页 Industrial Control Computer
关键词 人脸检测 多姿态 检测器结构 GENTLE ADABOOST face detection multi-view detector structure Gentle Adaboost
  • 相关文献

参考文献1

二级参考文献13

  • 1B. Moghaddam, A. Pentlan. Beyond linear eigenspaces: Bayesian matching for face recognition. In: Face Recognition: From Theory to Application. New York: Springer-Verlag 1998. 230~243.
  • 2H. A. Rowley. Neural network-based human face detection:[Ph. D. dissertation]. Pittsburgh, USA: Carnegie Mellon University, 1999.
  • 3R. Feraud, O.J. Bernier, Jean-Emmanuel Viallet, et al. A Fast and accurate face detector based on neural networks. IEEE Trans.Pattern Analysis and Machine Intelligence, 2001, 23(1): 42~53.
  • 4H. Schneiderman, T. Kanade. A statistical method for 3D object detection applied to faces and cars. IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina,2000.
  • 5E. Osuna, R. Freund, F. Girosi. Training support vector machines: An application to face detection. IEEE Conf. Computer Vision and Pattern Recognition, Puerto Rico, 1997.
  • 6V.P. Kumar, T. Poggio. Learning-based approach to real time tracking and analysis of faces. http: ∥ cbcl. mit. edu/cbcl/publications/ai- publications, 1999.
  • 7P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features. IEEE Conf. Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001.
  • 8Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm. In: Proc. the 13th Conf. Machine Learning. San Francisco: Morgan Kaufmann, 1996. 148~156.
  • 9R.E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 1999, 37 (3) .297~336.
  • 10Y. Li, S. Gong, H. Liddell. Support vector regression and classification based multi-view face detection and recognition.IEEE Conf. Automatic Face and Gesture Recognition, Grenoble,France, 2000.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部