期刊文献+

基于模式耦合的低弯曲损耗大模场带隙光纤研究 被引量:2

Study on low bending loss and large mode area bandgap fiber based on mode coupling
原文传递
导出
摘要 提出一种大模场带隙光纤,由排布在正方结构网格中的高折射率介质柱形成导光机制。采用有限元法分析了直光纤与弯曲光纤下的模式损耗与模场面积等特性。研究结果表明:这种光纤具有较宽的带隙,可同时支持基模和高阶模的传输,两种模式的泄漏损耗均低于1×10-3 dB/m。当光纤弯曲时,其包层会产生具有强泄露损耗的包层模,并在一定的弯曲半径下与纤芯的高阶模发生强耦合。当弯曲半径在15~20cm之间时,基模弯曲损耗小于0.01dB/m,而高阶模损耗大于1dB/m,因而光纤可以经弯曲实现大模场单模传输。在1064nm波长处,其直光纤的基模模场面积为1 319.62μm2,而在弯曲状态下的模场仍可达到975.00μm2以上,因而可实现大模场的低弯曲损耗传输。 A large mode area bandgap fiber is fully investigated, in which the guiding system is formed by high-refractive index rods. These rods are arranged in a mesh grid of the square structure. Losses and mode field area of the straight fiber and bending fiber are calculated by applying the finite-element meth- od. The investigation results show that the transmission of higher-order modes and fundamental modes can be supported by this fiber simultaneously, owing to a wide bandgap. In addition, leakage losses of these modes are less than 10-3 dB/rn. The calculation results indicate that cladding modes with strong leakage losses are generated from cladding, when bending the fiber. Under the condition of a certain ben- cling radius, cladding modes are coupled with higher-order modes in the core. In particular, when the ben- ding radius is in the range of 15 cm to 20 cm , the bending losses of fundamental modes are less than 0. 01 dB/m,whereas losses of higher-order modes are more than 1 dB/rn. As a result,the large mode ar- ea single-mode transmission can be realized by bending the fiber. At 1064 nm,the mode field area of the straight fiber can reach 1 319.62 μm2, but the mode field area of bending fiber can be more than 975 μm^2 ,which confirms that the large mode area and low bending loss can be achieved.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2017年第8期843-848,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61505071) 2015年度镇江市重点研发计划(GY2015033)资助项目
关键词 光子晶体光纤(PCF) 单模 带隙 弯曲损耗 大模场面积 photonic crystal fiber (PCF) single-mode bandgap bending loss large mode area
  • 相关文献

参考文献3

二级参考文献57

  • 1Knight J C, Birks T A, Russell P S J, et al. All-silica single- mode optical fiber with photoniccrystal cladding[J]. Optics Letter. 1996,21 (19) : 1547-1549.
  • 2Birks T A, Kinght J C, Russell P S J. Endlessly single-mode photonic crystal fiber[J]. Optical Letters, 1996,2,1 ( 19), 1547- 1549.
  • 3Hoo Y L,Jin W,Ho H L,et al. Measurement of gas diffusion co- efficient using photonic crystal fiber[J].IEEE Photonics Tech- nology Letters, 2003,15 (10) : 1434-1436.
  • 4Steinvurzel P, Eggleton B J,de Sterke C M, et al. Continuously tunable band-pass filtering using high-index inclusion micro- structured optical fiber [J].Electronics Letter, 2005,4] (8) : 463-464.
  • 5Du F, Lu Y, Wu S. Electrically tunable liquid-crystal photonic crystal fiber[J].Applied Physics Letter, 2004,85 ( 12 ), 2181- 2183.
  • 6YI Zhang, CHAO Shi, Claire Gu, et al. Liquid core photonic crystal fiber sensor based on Surface enhanced Raman scatter- ing[J].Applied Physics Letters, 200'7,90: 193-504.
  • 7Lei Wei, Lars Eskildsen, Johannes Weirich, et al. Continuously tunable all-in-fiber devices based on thermal and electrical Control of negative dielectric anisotropy liquid crystal Photonic band gap fibers[J]. Applied Optics,2009,48(3) :497-503.
  • 8YU Yong-qin, LI Xue-jin, HONG Xue-ming, et al, Some features of photonic crystal fiber temperature sensor based on liquid ethanol filling[J]. Optics Express,2009,18(15) : 15383-15388.
  • 9HAN Ting-ting,LIU Yan-ge, WANG Zhi,et al. Avoided-crossing- based ultrasensitive photonic crystal fiber refractive index sen- sor[J]. Optics Letter,2010,35(12) :2061-2063,.
  • 10XU Min, ZHU Tao, RAO Yun-jiang, et al. A refractometer based on Fabry-Perot interferometer formed by hollow core photonic crystal fiber[J]. Journal of optoelectronics · laser, 20]0,21 (I) :26-29.

共引文献23

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部