期刊文献+

一种基于多维标度和区域细化的无线室内定位方法 被引量:17

An Indoor Localization Algorithm Based on Multidimensional Scaling and Region Refinement
下载PDF
导出
摘要 移动用户的位置信息成为许多基于位置应用的内在驱动力.基于指纹的WLAN定位方法因在定位精度、定位复杂性以及定位成本等方面的优势,近年来成为室内定位研究领域的热点.然而,由于需要在训练阶段采集大量的参考点指纹信息,这类方法在大规模环境下的应用受到了很大的限制.该文提出一种基于多维标度(Multidimensional scaling,MDS)技术的室内定位算法,能够有效减少训练阶段指纹采集的开销.该方法利用不同位置之间的信号强度差异来表征对应的物理空间距离,并以此为基础利用多维标度技术计算目标对象的位置.提出一种区域细化的方法来进一步提高定位精度,在获取目标对象的近似位置后,通过缩小目标对象所在的可能区域并利用离其最近的参考点来对其位置进行迭代计算,有效提高了定位精度.在多个实际场景中的测试结果表明,相比于已有工作,该文所提出的算法有效降低了所需的参考点个数,并达到了与已有算法类似甚至更高的定位精度. The position information of mobile users becomes the internal motivation to many locations based applications,such as indoor navigation,travel application and mobile advertising service.Fingerprinting-based indoor localization has been a hot topic in localization research in recent years due to its high accuracy,low complexity and low cost.This method,however,requires collecting a large number of reference point information in the offline training phase,which greatly limits its application in large environments.This paper proposes a new indoor localization algorithm based on multidimensional scaling(MDS),which utilizes the distance between two points' received signal strength vectors to approximately measure their distance in physical environment,and then calculates the target object's location with the distance constraints with MDS.We further propose a region refinement method to improve the localization accuracy,in which only reference points contained in a small rectangle that contains the estimated position of the target object are used to calculate the target's location.Experiment results in two real environments and large scale simulations demonstrate the usefulness of our approach.The results show that,compared with the Horus algorithm,the proposed algorithm can achieve similar or even higher accuracy and reduce the number of required reference points by almost one order of magnitude.The effectiveness of the proposed algorithm is validated via large-scale simulation.
出处 《计算机学报》 EI CSCD 北大核心 2017年第8期1918-1932,共15页 Chinese Journal of Computers
基金 国家自然科学基金面上项目(61173169) 国家自然科学基金青年项目(61402056) 湖南省研究生科研创新项目(150140006)资助~~
关键词 室内定位 指纹定位 接收信号强度 多维标度 区域细化 物联网 信息物理融合系统 indoor localization fingerprinting localization received signal strength indicator multidimensional scaling region refinement Internet of Things Cyber-Physical System
  • 相关文献

参考文献2

二级参考文献40

  • 1翁芳菲,陈黎飞,姜青山.一种基于KNN的融合聚类算法[J].计算机研究与发展,2007,44(z2):187-191. 被引量:3
  • 2Lira H, Kung L, Hou J C, et al. Zero-configuration robust indoor localization: Theory and experimentation [C] //Proc of IEEE INFOCOM'06. Piscataway, NJ: IEEE, 2006 : 1-12.
  • 3Chintalapudi K, Padmanabhalyer A, Padmanabhan V N. Indoor localization without the pain [C]//Proc of ACM Mobicom'10. New York: ACM, 2010: 173-184.
  • 4Park J, Charrow B, Curtis D, et al. Growing an organic indoor location system [C] //Proc ACM MobiSys'10. New York: ACM, 2010:271-284.
  • 5Bahland P, Padmanabhan V N. RADAR: An in-building RF- based user Location and tracking system [C] //Proc of IEEE INFOCOM'00. Piscataway, NJ: IEEE, 2000: 775-784.
  • 6Ault A, Xuan Z, Coyle E J. K-nearest neighbor analysis of received signal strength distance estimation across environments [C] //Proc of WiNMee'05. Trentino, Italy: ICST Transactions, 2005:1-6.
  • 7Castro P, Chiu P, Kremenek T, et al. A probabilistic room location service for wireless network environments [C]//Proc of ACM Ubicom'01. New York: ACM, 2001: 18-34.
  • 8Haeberlen A, Flannery E, Ladd A, et al. Practical robust localization over large-scale 802.11 wireless networks [C] // Proc of ACM Mobicom'04. New York: ACM, 2004:70-84.
  • 9Roos T, Myllymaki P, Tirri H, et al. A probabilistic approach to WLAN user location estimation [J]. Int Journal of Wireless Information Networks, 2002, 9(3): 155-164.
  • 10Youssef M, Agrawala A. The horus WLAN location determination system [C] //Proc of ACM/USENIX Mobisys'05. New York: ACM, 2005:205-218.

共引文献32

同被引文献146

引证文献17

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部