期刊文献+

基于高阶统计量的DAISY特征向量降维

Dimensionality Reduction of DAISY Feature Vectors based on High-Order Statistics
下载PDF
导出
摘要 采用DAISY算子描述特征点时,每个特征点会生成一个1×200维度的特征向量。维度较高的特征向量会对后续的工作如特征点匹配等,带来非常大的计算量,严重影响算法的效率。因此,需要采取一定的方法降低特征向量的维度。因此,提出了一种基于三阶统计量的方法。这种方法可以通过提取原始向量中的主成分来降低维度。数值实验中证明,相对于经典的PCA降维算法,所提算法在提取主成分方面有更好的效果,同时可将向量的维数降到更低水平,大大提高了算法效率。 When the DAISY operator is used to describe the feature points, each feature point would generate a feature vector of 1x200 dimensionality. The feature vectors with higher dimensions would usually bring great computation to the following tasks, such as feature point matching, etc., and seriously affect the efficiency of the algorithm. It is necessary to adopt some methods and reduce the dimensionality of feature vectors. And for this reason, the method based on three-order statistics is proposed. This method can reduce the dimensionality by extracting the principal components in the original vector. Numerical experiments indicate that compared with the classic PCA dimensionality reduction algorithm, the proposed algorithm has better effect in extracting the principal components, and could reduce the dimensionality of vectors to a lower level, thus greatly improving the efficiency of this algorithm.
出处 《通信技术》 2017年第8期1664-1669,共6页 Communications Technology
关键词 DAISY描述向量 高阶统计量 双谱分析 特征向量降维 DAISY descriptor high-order statistics bispectrum analysis feature-vector dimension reduction
  • 相关文献

参考文献2

二级参考文献11

  • 1徐泾平,闵一键,陈启敏.人体肺胸系统声传递函数研究[J].声学学报,1994,19(2):147-153. 被引量:2
  • 2徐泾平,程敬之.功率倒谱技术在呼吸系统声传播特性分析中的应用[J].科学通报,1995,40(16):1518-1521. 被引量:4
  • 3aSHITOLE, C S N, ZZHRAN O, AL-NUAIMY W, et al. Combining fuzzy logic and neural networks in classification of weld defects using ultrasonic time-of- flight diffraction[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2007, 49(2): 79-82.
  • 4MOURA E P, SILVA R R, SIQUEIRA M H, et al. Pattern recognition of weld defects in preprocessed TOFD signals using linear classifiers[J]. Journal of Nondestructive Evaluation, 2004, 23(4): 163-172.
  • 5ZAHRAN O, AL-NUAIMY W. Automatic data pro- cessing and defect detection in time-of-flight diffraction images using statistical techniques[J]. Insight, 2005, 47(9): 538- 542.
  • 6LAWSON S W ,PARKER G A. Automatic detection of defects in industrial ultrasound images using a neu- ral network[J]. Proceedings of SPIE, 1996 (2786): 37 -47.
  • 7KECHIDA A, DRAI R, KHELIL M. 2D Gabor func tions and FCMI algorithm for flaws detection in ultra- sonic images [J]. Proceedings of World Academy of Science Engineering and Technology. 2005 ( 9 ): 184-188.
  • 8CHARLESWORTH J P, TEMPLE J A G, ZIPIN R B. Engineering Applications of Ultrasonic Time-oh flight Diffraction[M]. Philadelphia, USA: Research Studies Press Ltd. , 2001.
  • 9刘红星,左洪福,姜澄宇,屈梁生.信号频谱的二维向量及其应用[J].中国机械工程,1999,10(5):537-539. 被引量:13
  • 10盛朝阳,刚铁,黄江中.基于图像线性化处理的超声TOFD检测缺陷定位方法[J].无损检测,2011,33(7):15-17. 被引量:4

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部