期刊文献+

WZ Sagittae Space WeathermGIobal Warming

WZ Sagittae Space WeathermGIobal Warming
下载PDF
导出
摘要 The planet responds thermally to the impacts of nova WZ Sagittae debris by heating and cooling. The result in the first 19 years of the nova WZ Sagittae cycle is global warming that is hemi-spherically dependent and is detectable in South America ice core data and Antarctica surface mass balance data. Planetary thermal data are correlated in the past by calculating the debris impact times from the super outbursts times of nova WZ Sagittae. The shape of the arctic ice cap is dependent on the 220 degree path of the debris and does not exist southward between the western extension and eastern termini of nova WZ Sagittae that define the Arctic heating path. Future global heating from nova WZ Sagittae will begin in 2020-2021. The increase of 6 to 8 magnitude unusual earthquakes in recent years is the results of nova WZ Sagittae and SN 1054 debris impact. Unusual occurrences in the biosphere indicate the starting time of impacting supernova debris streams. The Antarctic sea ice distribution in November of 2016 defines the termini of maximum particle concentration impact from supernova 1006 in the southern hemisphere. The killing heat in India of the northern hemisphere is associated with the western terminus of this supernova. Novas and supernovas times of impact correlate with plague outbreaks in the western USA marking the particles in the debris streams as the cause of the disease.
机构地区 Retired
出处 《Journal of Earth Science and Engineering》 2017年第3期154-174,共21页 地球科学与工程(英文版)
关键词 WARMING global SUPERNOVA NOVA EXTINCTION ICE CRATER meteor. 全球变暖 碎片撞击 爆发时间 美国西部 超新星 平衡数据 表面质量 美国南部
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部