期刊文献+

非线性异方差分层模型及其参数估计

Nonlinear Modeling of Heteroscedastic Hierarchical Data via ECM Algorithm
原文传递
导出
摘要 提出了一类非线性异方差分层模型,研究了其固定效应和方差分量的极大似然估计问题.主要采用了期望条件最大化算法(Expectation Conditional Maximization Algorithm)和蒙特卡罗积分法(Monte-Carlo integration method).对于随机效应和模型误差的方差-协方差矩阵,本文既考虑了一般的非结构化形式,也考虑了诸如自回归(AR(1))和复合对称等的结构化形式.仿真模拟的结果显示本文提出的模型及参数估计方法表现良好.此外,本文还将该类模型和估计方法应用到中国官方经济数据上,得到了一些有意义的结论. We propose a class of nonlinear hierarchical models for the analysis of hierarchical data with heteroscedastieity and investigate the maximum likelihood es- timation of the fixed effects and variance components. The expectation conditional maximization algorithm (ECM) and Monte-Carlo integration methods are employed. Various forms of the variance-covariance matrices are considered for the random ef- fects and model errors, including the unstructured variance-covariance matrices and the structured ones, such as AR(1) and compound symmetry. Some simulations are implemented and perform well. We also apply our methods to an official Chinese data set and illustrate the utility of our proposed model and estimation method.
出处 《数学学报(中文版)》 CSCD 北大核心 2017年第5期731-744,共14页 Acta Mathematica Sinica:Chinese Series
基金 中央高校建设世界一流大学(学科)和特色发展引导专项资金支持(15XNL008)
关键词 分层模型 异方差 期望条件最大化算法 蒙特卡罗积分法 hierarchical models heteroscedasticity ECM algorithm Monte Carlo in-tegration
  • 相关文献

参考文献1

二级参考文献26

  • 1Cao, C.Z., Lin, J.G., Zhu, L.X. Heteroscedasticity and/or autocorrelation diagnostics in nonlinear models with AR(1) and symmetrical errors. Statist., 51:813-836 (2010).
  • 2Chen, C.F. Score test for regression models. J. Am. Statist. Assoc., 78:158-161 (1983).
  • 3Cook, R.D., Weisberg, S. Diagnostics for heteroscedasticity in regression. Biometrika, 70:1-10 (1983).
  • 4Cox, D.R., Hinkley, D.V. Theoretical Statistics. Chapman and Hall, London, 1974.
  • 5Cox, D.R., Reid, N. Parameter orthogonality and approximate conditional inference. J.R. Statist. Soc. Ser. B, 49(1): 1-39 (1987).
  • 6Cysneiros, F.J.A., Paula, G.A., Galea, M. Heteroscedastic symmetrical linear models. Statist. Prob. Lett., 77:1084-1090 (2007).
  • 7Davidian, M., Giltinan, D.M. Nonlinear models for repeated measurement data. Chapman and Hall, London, 1995.
  • 8Diaz-Garcia, J.A., Galea, M., Leiva-Sanchez, V. Influence diagnostics for elliptical multivariate linear regression models. Comm. Statist. Theory Methods, 32:625-641 (2003).
  • 9Fang, K.T., Kotz, S., Ng, K.W. Symmetric multivariate and related distributions. Chapman and Hall, London, 1990.
  • 10Calea, M., Paula, G. A., Bolfarine, H. Local influence in elliptical linear regression models. The Statistician, 46:71-79 (1997).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部