期刊文献+

一种信息不确定系统的模糊安全博弈模型 被引量:2

Ambiguous Game Based on Minimax Regret in Uncertain Information System
下载PDF
导出
摘要 面对信息技术广泛运用的今天,信息安全问题开始受到人们的广泛关注.现有的最新工作大多使用贝叶斯博弈的方法来解决.贝叶斯博弈可以应对参与者类型信息不完全的情况,但现实生活中,信息不仅不完全而且是不确定的,即不知道对手类型精确的分布概率.为解决这个问题,扩展了贝叶斯博弈,提出极小极大模糊博弈模型(ABGMR).该模型中使用证据理论来描述信息的模糊性;引入可接受收益的极小极大遗憾原则,在收益可接受的情况下最小化最大遗憾值,避免了出现无法接受的收益和过度悲观的情况.极小极大模糊博弈模型适用于多种攻击者多个防御者的情况,并且攻击者和防御者不需先观察对手的策略,可以同时采取行动.最后将ABGMR运用在信息安全领域资源分配场景中,并与已有博弈算法DOBSS进行实验对比,证明了其有效性和最终决策的最大遗憾值的优越性. As information technology is widely used,the issue of information security has become a rising concern.Most of the latest available researches use Bayesian game to solve problems.Bayesian game model can handle the case where the information about players’ type is incomplete.However,in real life,the information is not only incomplete but also ambiguous,i.e.,a player may not know the precise probability distribution over potential opponent’s type.To deal this issue,this paper introduces a new game model named the Ambiguous Game(ABGMR),which extends the Bayesian game model by incorporating Dempster-Shafer Theory that describes the ambiguity and a principle of acceptable costs of minimax regret that avoids the overly pessimistic approach and the potential for unaffordable losses.This model is applicable for the situation with multifarious attackers’ types and various defenders.Attackers and defenders actually take their actions simultaneously.Finally,the model is illustrated in Information Security Domain and contrasts with existing game algorithms,which proves the validity and superiority of ABGMR in maximum regret of final strategies.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第9期2045-2050,共6页 Journal of Chinese Computer Systems
基金 江苏省自然科学基金项目(BK20150960)资助
关键词 模糊博弈 极小极大遗憾 证据理论 信息安全 不确定性 ambiguous game minimax regret D-S theory information security uncertainty
  • 相关文献

参考文献1

二级参考文献73

  • 1Von S H. Marktform und gleichgewicht[M]. New York: Springer, 1934.
  • 2Wang F Y. A coordination theory for intelligent machines[J] The IFAC Journal Automa-tica, 1990, 26(5): 55-60.
  • 3Conitzer V, Sandholm T. Computing the optimal strategy to commit to[C]//Proceedings of the 7th ACM Conference on Electronic Commerce (EC'06). Ann Arbor, Michigan, USA, 2006: 82-90.
  • 4Paruchuri P, Pearce J P. Playing games for security: an efficient exact algorithm for solving bayesian stackelberg games[C]//Proceedings of the 7th International Joint Con- ference on Autonomous Agents and Multiagent Systems (AAMAS'08). Estoril, Portugal, 2008: 895-902.
  • 5Pita J, Jain M. Using game theory for los angeles airport security[J]. AI Magazine, 2009, 30(1): 43-57.
  • 6Tsai J, Kiekintveld C. IRIS-a tool for strategic security allocation in transportation networks[C]// Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS'09). Budapest, Hungary, 2009: 37-44.
  • 7Shieh E, An B. Portect: A deployed game theoretic sys- tem to protect the ports of the United States[C]// Pro- ceedings of the llth International Conference on Au- tonomous Agents and Multiagent Systems(AAMAS'12). Va- lencia, Spain, 2012: 13-20.
  • 8Yin Z, Jiang A X. TRUSTS: scheduling randomized patrols for fare inspection in transit systems using Game theory[J]. AI Magazine. 2012, 33(4): 59-72.
  • 9Letchford J, Korzhyk D, Conitzer V. On the value of com- mitment[J]. Autonomous Agents and Multi-Agent Systems. 2014, 28(6): 986-1016.
  • 10Korzhyk D, Yin Z. Stackelberg vs. Nash in security games: an extended investigation of interchangeability, equivalence, and uniqueness[J]. J. Artif. Intell. Res.(JAIR). 2011, 41: 297-327.

共引文献12

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部