期刊文献+

求解无约束优化问题的改进教与学优化算法 被引量:5

Improved Teaching-learning-based Optimization Algorithm for Unconstrained Optimization Problems
下载PDF
导出
摘要 教与学优化算法(TLBO)是一种新型的群智能优化算法.针对算法求解性能的不足,对其进行改进并用于求解无约束全局优化问题.首先,在算法的"教师阶段"采用一种新的策略对学生平均水平进行定义,然后,在算法的"教师阶段"和"学生阶段"分别加入一种线性递减的惯性权重因子,最后,在算法中加入一种自适应精英交叉算子,不同粒子根据适应度值而动态执行交叉操作.通过11个无约束优化问题进行对比测试实验,结果显示,改进后的算法(ITLBO)在探索性能和收敛速度方面优于TLBO等其它四种类型的算法. TLBO is a novel swarm intelligence optimization algorithm.Since the shortcoming of TLBO,a new improved teaching-learning-based optimization algorithm (ITLBO) is proved to solve unconstrained optimization problems.Firstly,a new method is adopted to define the average level of the students in the “teacher stage”.Then,a linear decreasing inertia weigh factor is added in the “teacher” and “student” stage.Finally,the crossover operation is performed dynamically according to the fitness value with an adaptive crossover operator in the algorithm.Through 11 unconstrained optimization problems are compared and tested,the results show that ITLBO is significantly better than the other four types of TLBO algorithm.
作者 赵乃刚
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第9期2107-2112,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272095)资助 国家自然科学基金青年基金项目(41401521)资助 山西大同大学科学研究项目(2016K1)资助
关键词 教与学算法 自适应 交叉算子 无约束优化 teaching-learning-based optimization (TLBO) adaptive crossover operator unconstrained optimization
  • 相关文献

参考文献4

二级参考文献40

  • 1湛锋,魏星,郭建全,胡志坚,陈允平.基于改进粒子群优化算法的PID参数整定[J].继电器,2005,33(19):23-27. 被引量:10
  • 2潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 3刘金琨.先进PID控制MATLAB仿真[M].3版.北京:电子工业出版社,2011.
  • 4郭大庆,李晓,赵永进.基于改进PSO算法的PID参数自整定[J].计算机工程,2007,33(18):202-204. 被引量:20
  • 5YU X H. Can backpropagation error surface not have localminims [ J ]. Neural Networks, 1992, 3 (6) : 1009-1021.
  • 6YU X H, CHEN G A. On the local minima free condition of backpropagation learning [ J ]. IEEE Transactions on Neural Networks, 1995, 6(5): 1300-1303.
  • 7GOLDBERG D E, KORB B, DEB K. Messy genetic algo- rithms: motivation, analysis, and first results[J]. Complex Systems, 1989, 3(5): 493-530.
  • 8CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [ J ]. IEEE Transactions on Evolutionary Computation, 2002, 6 (1): 58-73.
  • 9RAO R V, SAVSANI V J, VAKHARIA D P. Teaching- learning-based optimization: a novel method for constrained mechanical design optimization problems [ J ]. Computer Ai- ded Design, 2011, 43(3) : 303-315.
  • 10RAO R V, SAVSANI V J, VAKHARIA D P. Teaching- learning-based optimization: an optimization method for continuous non-linear large scale problems [ J ]. Information Sciences, 2012, 183 (1): 1-15.

共引文献73

同被引文献34

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部