期刊文献+

基于半自主导航与运动想象的多旋翼飞行器二维空间目标搜索

Two-dimensional space target searching based on semi-autonomous navigation and motor imagery for multi-rotor aircraft
原文传递
导出
摘要 提出一种脑-机接口系统实现多旋翼飞行器室内二维空间目标搜索.系统由半自主导航与决策子系统组成.半自主导航子系统用于为决策子系统提供可行飞行方向并实现多旋翼飞行器半自主避障.决策子系统采用互相关方法与逻辑回归方法完成运动想象的脑电特征提取与分类.实际的室内目标搜索实验验证了使用该系统是可行且有效的.相比其他方法,减少了被试者负担,降低控制难度,控制精度约提高±10 cm. A brain computer interface( BCI) system was proposed to realize the two-dimensional indoor space target searching for multi-rotor aircraft. This system consists of semi-autonomous navigation and decision subsystems. The semi-autonomous navigation subsystem is employed to provide feasible directions for the decision subsystem and avoid obstacles semi-automatically for multi-rotor aircraft. The decision subsystem utilizes the cross-correlation( CC) and logistic regression( LR) methods to implement motor imagery( MI) electroencephalogram( EEG) feature extraction and classification,respectively. The actual indoor target searching experiment validates the feasibility and effectiveness of this BCI system. Compared to similar methods,the proposed BCI system reduces the burden of the subjects and the control difficulties. The control precision increases by approximately ± 10 cm.
出处 《工程科学学报》 EI CSCD 北大核心 2017年第8期1261-1267,共7页 Chinese Journal of Engineering
基金 国家自然科学基金资助项目(51405073) 辽宁省高校创新团队资助项目(LT2014006) 辽宁省教育厅资助项目(2016HZZD05)
关键词 脑-机接口 运动想象 半自主导航 互相关 逻辑回归 brain computer interface motor imagery semi-autonomous navigation cross-correlation logistic regression
  • 相关文献

参考文献2

二级参考文献26

  • 1Tanaka K, Matsunaga K, Wang H. Electroencepha logram-based control of an electric wbeelchair[J].IEEE Trans Robotics, 2005, 21(4): 762-766.
  • 2Iturrate I, Antelis J, Kubler A, et al. Non-invasive brain-actuated wheelchair based on a P300 neurophys- iological protocol and automated navigation[J]. IEEE Trans Robot, 2009, 25(3): 614-627.
  • 3Rebsamen B, Guan G T, Zhang H H, et al. A brain controlled wheelchair to navigate in familiar environ-ments[J]. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(6): 590-598.
  • 4Lopes A C, Pires G, Vaz L, et al. Wheelchair naviga tion assisted by human-machine shared-control, and a P300 Based brain computer interface[C]//Intelligent Robots and Systems. San Francisco: IEEE, 2011: 2438-2444.
  • 5Ferreira A, Celeste W C, Cheein F A, et al. Human machine interfaces based on EMG and EEG applied to robotic systems [J ]. J Neuro Eng Rehab, 2008, 5(1): 1-15.
  • 6Eseolano C, Antelis J M, Minguez J. A telepresenee mobile robot controlled with a noninvasive brain-com- puter interface[J]. IEEE Transactios Systems, Man, Cybernetics B: Cybernetics, 2012, 42(3): 793-804.
  • 7Wolpaw J R, MeFarland D J, Neat W, et al. An EEG-based braiwcomputer interface for cursor con- trol[J]. Electroencephalography Clin Neurophysiol, 1991, 78(3) : 252-259.
  • 8Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralyzed[J]. Nature, 1999, 398(6725) : 297-298.
  • 9Karim A A, Hinterberger T, Richter J, et al. Neural Internet: Web surfing with brain potentials for the completely paralyzed[J].Neurorehab Neural Repair, 2006, 20(4): 508-515.
  • 10Barachant A, Bonnet S, Congedo M, et al. Multi- class brain-computer interface classification by Rie mannian geometry [J]. IEEE Trans Biomed Eng, 2012, 59(4): 920-928.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部