摘要
运用锥上的Avery-Henderson不动点定理,研究了时间测度链上一类非线性三点边值问题{u^(Δ▽)(t)+h(t)f(t,u(t))=0(t∈[a,c]T),u~Δ(a)=0,αu(c)+βu~Δ(c)-u~Δ(b)=0至少2个正解的存在性,其中,T表示时间测度链,0≤a<b<c,α>0,β>1.并给出了与之相对应的线性三点边值问题解的一些性质,举例证明了所得结论的正确性.
Existence of at least two positive solutions to a nonlinear three-point boundary value problem{uΔ▽(t)+h(t)f(t,u(t))=0 (t[a,c]?T),uΔ(a)=0,αu(c)+βuΔ(c)-uΔ(b)=0on time scales is considered, and the main tool is well-known Avery-Henderson fixed-point theorem in cones.The solution and some of its properties of the linear three-point boundary value problem related to the nonlinear boundary value problem are provided.At last, an example is given to demonstrate the result of this study.
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2017年第4期102-105,共4页
Journal of South China Normal University(Natural Science Edition)
基金
甘肃省自然科学基金项目(3ZS042-B26-021)
甘肃省高等学校科研项目(2015A-172
2016A-112)
兰州文理学院高水平科研项目(2015GSP07)
关键词
时间测度链
边值问题
不动点定理
正解
time scales
boundary value problem
fixed point theorem
positive solution