摘要
卡尔曼滤波方法是变形监测中常用的一种方法,本文通过对获取的地铁沉降观测数据进行监测,采用经典的卡尔曼滤波方法和基于方法补偿的自适应卡尔曼滤波方法进行监测预估,通过对比发现,基于方差补偿的自适应卡尔曼滤波方法能够有效地控制观测数据异常对动态系统参数估计的影响,保证了变形监测数据估计的精度。
Kalman filtering method is a commonly used method in deformation monitoring.In this paper, by monitoring the data of metro subsidence obtained, the classical Kalman filter method and adaptive Kalman filtering method based on method compensation are used to monitor and estimate.By the comparison, it is found that the adaptive Kalman filter based on variance compensation can effectively control the influence of observation data anomaly on the estimation of dynamic system parameters and ensure the accuracy of deformation monitoring data estimation.
出处
《测绘与空间地理信息》
2017年第8期1-3,9,共4页
Geomatics & Spatial Information Technology
关键词
卡尔曼滤波
方差补偿
自适应
监测预估
精度
Kalman filtering
variance compensation
adaptive
monitor and estimates
precision