摘要
针对传统交通控制与诱导模型及算法的不足,提出了具有中心协调系统(CCOS)的交通控制与诱导协同模型。利用数据融合技术将历史数据的短时交通预测、交通事件检测结果以及实时交通流数据设计面向交通动态的信息融合,并采用神经网络技术构建基于神经网络的交通控制诱导协同模型,同时对模型的参数进行了确定。通过典型的路网进行仿真实验和对比分析,实验验证了该模型是可行和有效的。
In view of the shortage of traditional traffic control and guidance model and algorithms, the traffic control and guid- ance model based on central coordination system (CCOS) is proposed. In this model, the short-term traffic prediction of past traffic data, the result of traffic incident detection and the real-time traffic flow data are used to design the traffic-oriented dynamic traffic information fusion. Moreover, using the neural network technology, the traffic control and guidance coordination model based on neural network system is presented. Its parameters are decided by the experiments. Finally, a number of typical local road networks are selected for simulation comparative experiments. The experiments show this model is feasible and effective.
出处
《电脑与电信》
2017年第7期17-22,25,共7页
Computer & Telecommunication
基金
广州市121人才梯队工程资助项目和"智慧天河"体系架构研究项目
项目编号:201603RY004
关键词
交通控制
交通诱导
数据融合
神经网络
协同模型
traffic control
traffic guidance
data fusion
neural network
coordination model