期刊文献+

基于多频段传感器辅助认知无线电网络的高能效传感器调度算法 被引量:3

An energy-efficient sensor scheduling algorithm based on multi-band sensor-aided cognitive radio networks
下载PDF
导出
摘要 在传感器协助认知无线电网络中,传统的高能效传感器调度问题只考虑了一个频段。多频段的传感器调度问题有许多新的研究领域。建立了一种多频段传感器调度问题的模型,提出了一种用于提高认知网络通信容量的基于遗传算法的高能效调度算法。模型考虑了传感器切换频段的能量消耗。在问题模型中,认知基站基于提高能效的目标为每个频段分配一组传感器进行协作感知。基于遗传算法的高能效调度算法通过优化传感器的调度使认知网络达到最大的通信容量,从而达到高能效的目标。仿真结果表明,本文的算法可以比贪心算法以及其他算法取得更高的网络通信容量。 Traditional energy-efficient sensor scheduling problems only consider single frequency hand in sensor-aided cognitive radio networks. Multi-band energy-efficient sensor scheduling problems have many novel research fields. We formulate a multi-band sensor scheduling problem and propose a genetic algorithm based en- ergy-efficient scheduling algorithm to improve the throughput. We take account of the energy consumption of the sensor when switching frequency bands. In the model, the cognitive base station assigns a set of sensors for each frequency to improve energy efficiency. The genetic algorithm based energy-efficient scheduling algorithm optimally schedules the activities of the sensors to increase the overall secondary system throughput and achieve the goal of energy efficiency. Simulation results show that our algorithm achieves higher network throughput than the greedy algorithm and other algorithms.
出处 《计算机工程与科学》 CSCD 北大核心 2017年第8期1438-1443,共6页 Computer Engineering & Science
基金 国家自然科学基金(61401301) 国网天津市电力公司科技项目
关键词 认知无线电 传感器调度问题 通信容量最大 遗传算法 cognitive radio sensor scheduling problem throughput maximization genetic algorithm
  • 相关文献

参考文献1

二级参考文献9

  • 1Cabric D, Mishra S M, Brodersen R W. Implementation Is- sues in Spectrum Sensing for Cognitive Radio[C]//Proc of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004,772-776.
  • 2Ganesan G, Li Y G. Cooperative Spectrum Sensing in Cogni tire Radio Part Ⅰ: Two User Networks[J]. IEEE mransac- tions on Wireless Commun, 2007,6(6):2204-2212.
  • 3Ganesan G, Li Y G. Cooperative Spectrum Sensing in Cogni- tive Radio Networks[C]//Proc of 2005 1st IEEE Int'l Symp on New Frontiers in Dynamic Spectrum Access Networks, 2005: 137-143.
  • 4Zhao Y, Zhuang X. Gaussian Mixtrue Denisty Modeling of Non Gaussian Source for Autoregressive Process [J]. IEEE Trans on Ssignal Processing,1995,43(4):894-903.
  • 5Lu N H. Detection of Weak Signals in Non-Gaussian Noise[J]. IEEE Trans on Information Theory,1981,27(6) :755-771.
  • 6Sengupta D, Kay S M. Parameter Estimation and GLRT De- tection in Colored Non Gaussian Autoregressive Processing [J]. IEEE Trans on Acoustics and Signal Processing, 1990, 38(10),1661-1676.
  • 7Kay S, Sengupta D. Detection in Incompletely Characterized Colored Non-Gaussian Noise via Parametric Modeling [ J ]. IEEE Trans on Singal Processing, 1994,42(10):3066-3070.
  • 8Kay S M. Fundamentals of Statistical Signal Processing Vol- ume 1: Estimation Theory[M]. Beijing: Publishing House of Electronics Industry, 2003.
  • 9Kay S M. Fundamentals of Statistical Signal Processing Vol- ume Ⅱ: Detection Theory[M]. Beijing: Publishing House of Electronics Industry, 2003.

同被引文献44

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部