摘要
面向人群场景中异常拥挤行为检测,提出基于光流计算的检测方法。该方法首先采用光流微粒矢量场提取人群运动特征;然后基于社会力模型计算光流微粒之间的相互作用力;最后对相互作用力进行直方图熵值处理来实现人群行为判别。仿真实验表明,本算法可以区分人群场景中异常区域内相互作用力的大小,对异常拥挤行为进行判别和定位。
We propose a detection method based on optical flow to detect the abnormal crowded be- havior in a crowd scene. In this method, the motion characteristics of the crowd are extracted by using the optical flow vector field. Then the interaction force between the particles is calculated based on the social force model. Finally, we implement histogram entropy discrimination process on the interaction force to achieve the discrimination of crowd behavior. Simulation results show that the algorithm can distinguish the size of the interaction force in abnormal regions in the crowd scene, identify and locate the abnormal congestion.
出处
《计算机工程与科学》
CSCD
北大核心
2017年第8期1465-1470,共6页
Computer Engineering & Science
关键词
光流计算
拥挤行为
社会力模型
直方图统计
熵
optical flow computation
crowd behavior
social-force model
histogram statistics
entropy