摘要
首先分析5G的主要应用场景及技术需求,然后介绍几种面向5G的新型多载波技术,最后对几种技术的优缺点进行比较,并分析5G各类应用场景下适合采用的多载波技术。
出处
《电信技术》
2017年第8期20-22,共3页
Telecommunications Technology
二级参考文献35
-
1G. Fettweis, M. Krondorf, and S. Bittner, "GFDM-generali,ed frequency division multiplexing," in Proc. IEEE 69th Vehicular Technology Conference, Barcelona, Spain, Apr. 2009, 11.1-4.
-
2B. Farhang- Boroujeny, "OFDM versus filter bank multicarrier," IEEE Signal Processing Magazine, vo1.28, no.3, pp.92- 112, May 2011. doi: 10.11091 MSP.2011.940267.
-
3F. Schaich and T. Wild, "Waveform contenders for 5G: OFDM vs. FBMC vs. UFMC," in Proc. 6th International Symposium on Communications, Control and Signal Processing, Athens, Greece, May 2014, PP. 457-460.
-
4M. Kasparick, G. Wunder, P. Jung, et al., "Hi-orthognal waveforms for 5G random access with short message support", in Proc. 20th European Wireless Conference, Barcelona, Spain, May 2014, PP. 1-6.
-
5H. Nikopour and H. Baligh, "Sparse code multiple access," in Proc. IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications. London, United Kingdom, Sept. 2013, PP. 332- 336.
-
6Y. Saito, Y. Kishiyama, A. Benjebbour, et ol., "Non-orthogonal multiple access (NOMA) for cellular future radio access," in Proc. IEEE 77th Vehicular Technology Conference, Dresden, Germany, Jun. 2013, 11.1-5.
-
7F.-I.. Luo, Digital Front-End in Wireless Communications and Broadcasting: Circuits and Signal Processing, Cambridge, England: Cambridge University Press, Nov. 2011.
-
8Z. Knllor and P. Horvath, "pApR reduction of FBMC by clipping and its iterative compensation," Journal of Computer Networks and Communications, vol. 2012, article ID 382736.
-
9R. Ayadi, M. Siala, and I. Kammoun, "Transmit/receive pulse-shaping design in BFDM systems over time-frequency dispersive A WGN channel," Proc. of IEEE International Conference on Signal Processing and Communications, Dubai, UAE, 2007, PP. 772-775. doi: 10.1155/2012/382736.
-
10C. Lei;;, P. Siohan, and R. Legouable, "The alamouti scheme with CDMAOFDM/OQAM," EURASIP Journal on Advances in Signal Processing, vol. 2010, article no. 2. doi:10.1155/20101703513.
共引文献6
-
1李佳益,袁琼,李晓峰.基于UFMC的类语音调制解调技术研究[J].北京电子科技学院学报,2022,30(4):40-47.
-
2李宁,周围.面向5G的新型多载波传输技术比较[J].通信技术,2016,49(5):519-523. 被引量:14
-
3邵玉蓉,姜恩华.基于FBMC的数据传输技术研究[J].廊坊师范学院学报(自然科学版),2019,19(3):22-27. 被引量:6
-
4GONG Shuhong,ZHANG Xingmin,DOU Jianwu,HUANG Weifang.Non‐Negligible Influences of Rain on 5G Millimeter Wave Terrestrial Communication System[J].ZTE Communications,2020,18(3):64-70.
-
5TIAN Ruihan,WU Xuezhi,XU Wenzheng,ZUO Zhiling,CHEN Changqing.A Hybrid Five-Level Single-Phase Rectifier with Low Common-Mode Voltage[J].ZTE Communications,2023,21(4):78-84.
-
6DANG Hao,LU Yang,DU Yanzheng,ZHANG Xiu,ZHANG Qian,MA Weigang,ZHANG Xing.A Detailed Thermal Resistance Network Analysis of FCBGA Package[J].Journal of Thermal Science,2024,33(1):18-28.
同被引文献5
-
1赵锦程,黄斐一,孔繁盛.面向5G的无线宽带多载波传输技术[J].移动通信,2015,39(9):14-18. 被引量:19
-
2李宁,周围.面向5G的新型多载波传输技术比较[J].通信技术,2016,49(5):519-523. 被引量:14
-
3张万春,辛雨,郁光辉.一种适合5G的新型多载波技术--FB-OFDM[J].中兴通讯技术,2016,22(3):22-25. 被引量:7
-
4陈兆良.基于5G的新型多载波传输技术对比[J].中国新通信,2017,19(9):5-6. 被引量:3
-
5王华华,李孟杰,余永坤,杨康.面向5G的非正交多载波传输技术[J].电脑与电信,2017(8):3-5. 被引量:1
二级引证文献6
-
1朱序均.5G移动通信技术的应用及其发展前景[J].通讯世界,2018,25(10):20-21. 被引量:7
-
2陈君.基于5G通信的低通滤波器设计与实现[J].现代信息科技,2021,5(8):51-53. 被引量:2
-
3丁爱玲,韩佳倩,牛晓珂,冯兴乐.空频联合索引调制系统中子载波优化算法[J].科学技术与工程,2021,21(26):11184-11190.
-
4乔娟.大数据5G移动通信技术的应用与发展前景[J].电子元器件与信息技术,2022,6(1):16-18. 被引量:2
-
5毕峰.基于5G无线接入和无线回程一体化的增强技术研究[J].电信科学,2022,38(5):173-178. 被引量:2
-
6谢于晨.舰船远程航行中5G通信调制信号识别方法[J].舰船科学技术,2023,45(14):156-159.
-
1邱哲涛.新时代的移动通信的关键技术研究[J].计算机光盘软件与应用,2012,15(3):57-57.
-
2张丽敏.浅析4G移动通信技术[J].电脑知识与技术(过刊),2010,0(17):4635-4636. 被引量:5
-
3林文涛.浅谈GPON技术及应用[J].中小企业管理与科技,2010(22):287-288.
-
4技术需求[J].中国科技信息,2004(6):63-63.
-
5王刚,刘珊杉,崔军峰,刘恩亚.区块链技术与应用浅析[J].中国无线电,2017(7):63-66. 被引量:6
-
6苏毅,朱宏斌.反向科技特派员模式探析[J].安徽农学通报,2017,23(17):12-13. 被引量:2
-
7刘晓勇.我国移动通信频率现状及5G频率发展趋势[J].通信世界,2017,0(24):16-17. 被引量:2
-
8苑立波.前言[J].应用科学学报,2017,35(4).