期刊文献+

改进梯度倒数加权滤波红外弱小目标背景抑制 被引量:3

Infrared dim and small target background suppression based on improved gradient inverse weighting filter
下载PDF
导出
摘要 红外弱小目标易淹没在复杂的起伏背景中,为了提高后续目标的检测能力,往往需要通过抑制背景来增强目标信号。传统梯度倒数加权滤波对背景边缘缺乏稳健的适应性,本文提出了改进的梯度倒数加权滤波算法,即通过建立背景局部区域相关函数,利用背景局部统计特性自适应调整滤波参数,能较好地适应剧烈变化的背景,提高背景抑制能力。实验表明,改进的梯度倒数滤波器能对图像背景进行有效的抑制,总体性能优于其他背景抑制方法。 Dim and small infrared target easily flooded in complicated background. In order to improve the ability of target detection, the background is often suppressed to enhance the target signal. Referring to the lack of robust adaptability of the gradient inverse weighted filtering for background edges, an improved gradient inverse weighting filtering algorithm is proposed through the establishment of background local correlation function. The use of background local statistical characteristics of adaptive filter parameters, can better adapt to the drastic change in the background, and improve the ability to suppress background suppression algorithm. Experimental results show that the improved gradient inverse weighted filtering could effectively suppress the background of images, presenting a superior overall performance to other background suppression methods.
出处 《光电工程》 CAS CSCD 北大核心 2017年第7期719-724,共6页 Opto-Electronic Engineering
关键词 弱小目标 梯度倒数加权滤波 背景抑制 自适应参数 dim and small target gradient inverse weighted filtering background suppression self-adaptive parameter
  • 相关文献

参考文献5

二级参考文献31

  • 1FU Shujun,RUAN Qiuqi,WANG Wenqia.Feature Preserving Image Resolution Enhancement Using Adaptive Bidirectional Flow[J].Chinese Journal of Electronics,2006,15(1):103-107. 被引量:2
  • 2[2]A. Morin. Adaptive spatial filtering techniques for the detection of targets in infrared image seekers. In Acquisition, Tracking, and Pointing XIV, Proceeding of SPIE, 2000: ,4052:182~193.
  • 3[3]Askar H. , Xiaofeng Li, Zaiming Li. Background clutter suppression and dim moving point targets detection using nonparametric method. IEEE Int. Conf. Communications, Circuits and Systems, 2002,2: 982~ 986.
  • 4POHLIG S C. Spatial-Temporal detection of electro-Optic moving targets [J]. IEEE Trans. on Aerospace and Electronic, System, 1995, 31(2): 608-616.
  • 5Tzannes A P, Brooks D H. Detecting small moving objects using temporal hypothesis testing [J]. IEEE Trans. on Aerospace and Electronic System, 2002, 38(2): 570-585.
  • 6HUANG Kai-qi, WU Zhen-yang, WANG Qiao. Image enhancement based on the statistics of visual representation[J]. Image and Vision Computing, 2005, 23: 51-57.
  • 7Pearse A Ffrench, James R Zeidler, Walter H Ku. Enhanced detectability of small objectives in correlated clutter using an improved 2-D adaptive lattice algorithm [J]. IEEE Transon Image Processing, 1997, 6: 383-397.
  • 8Persona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Transaction on Pattern Analysis and MachineIntelligence, 1990, 12: 629-639.
  • 9Catte F, coil T, Lions P L, et al. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM J Number Anal, 1992, 29: 182-193.
  • 10Chen Y, Barcelos C A Z. Smoothing and Edge Detection by Time-Varying Coupled Nonlinear Diffusion Equations [J]. Computer Vision and Image Understanding, 2001, 82: 85-100.

共引文献44

同被引文献20

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部