期刊文献+

地铁列车轴承振动特征提取算法研究

Research on the Algorithm of Extracting Vibration Characteristics of Metro Train Bearings
下载PDF
导出
摘要 在地铁列车旋转部件中,轴箱轴承是关键的旋转部件之一。提取轴承的振动特征,并对轴承内部结构进行状态评估和健康监测,是列车轴承状态健康监测技术的发展方向和重要应用。通过轴箱轴承跑合试验台试验,针对轴承健康诊断经典方法—包络解调法的局限,实现了一种新的自适应包络解调方法,结合轴承振动试验结果进行了地铁列车轴承振动特征提取,验证了新方法的有效性。 Axle box bearing is one of the key rotating components in the metro train. It is the development trend and important application of the bearing state health monitoring technology to extract the bearing vibration characteristics, and assess and monitor the state and the health of the internal structure of the bearing. In this research, a new adaptive envelope demodulation method was implemented to break the limits of the classical method of bearing health diagnosis by means of the operation test of the axle box bearing. In addition, the bearing vibration characteristics were extracted from the metro train in combination with the test results, which verified the validity of the new method.
出处 《机械与电子》 2017年第8期17-20,共4页 Machinery & Electronics
关键词 结构健康监测 轴箱轴承 自适应解调法 轴承振动特征 structural health monitoring axle box bearing self- adaptive demodulation method bearing vibration characteristics
  • 引文网络
  • 相关文献

参考文献8

二级参考文献70

共引文献685

;
使用帮助 返回顶部