期刊文献+

不同浓度F掺杂MoS_2性质的第一性原理计算研究 被引量:1

First Principles Calculations of Properties of Different F-doped MoS_2
下载PDF
导出
摘要 MoS_2二维材料由于其本身就具有直接带隙且带隙不为零,具有优于石墨烯的能带结构,是良好的半导体材料,在电学、磁学、及未来电子器件等方面都有良好的性质和应用前景。利用第一性原理方法,通过替位掺杂的方式,研究了不同浓度F掺杂单层MoS_2的能带结构和各种态密度图,并与本征单层MoS_2及文献中的掺Cl、掺O结果做了对比,分析了各自的电子结构、导电性和磁性。结果发现:掺F后单层MoS_2由直接带隙变成间接带隙,单层MoS_2的禁带宽度从本征的1.718e V减小到1.301 e V,且随着F掺杂浓度的增加,带隙更加变窄,体系的导电性更加增强。带隙的调节程度大于文献中掺Cl的效果而小于掺O的效果。磁性方面,本征的MoS_2无磁性,发现掺F后出现了一定磁性,且随着F掺杂浓度的增加其磁性增加。这些结果有利于对MoS_2优化改性和调控从而在微电子器件和半导体自旋电子学方面的应用。 MoS_2two-dimensional material is a better semiconductor materials than graphene in electrical and magnetic due to its own direct band gap and non-zero band gap band structure. We have a good application prospects in future electronic devices. In this paper,the band structure and density of states spectra of single-layer MoS_2 with different concentrations of F-doped were studied in first-principles method. The conductivity and magnetic properties were analyzed. It is found that the energy gap of the monolayer MoS_2 is reduced from 1. 718 e V of direct band gap of the intrinsic single layer MoS_2 to 1. 301 e V of indirect band gap. With the increase of the F doping concentration,the band gap becomes narrow and the conductivity is more enhanced. The degree of change of band gap is larger than that of Cl in literature and less than that of O. Besides,the intrinsic MoS_2 is non-magnetic. Magnetic properties show that,after F doped,the magnetic properties will increase with the increase of the F-doping concentration. These results are useful for the MoS_2 modification and application in microelectronic devices and semiconductor spin electronics.
出处 《中国锰业》 2017年第4期89-92,共4页 China Manganese Industry
基金 国家自然科学基金项目(Nos.61504128 61504129 61274041和11275228) 陕西省自然科学基础研究计划资助项目(2017JQ6011) 商洛市科学技术研究发展计划资助项目(SK2015-35) 商洛学院科学与技术研究基金项目(15SKY025)
关键词 单层MoS2 第一性原理 掺杂 电子结构 Monolayer MoS2 First-principle Doping Electronic structure
  • 相关文献

参考文献9

二级参考文献86

  • 1裴小科,林碧洲,张进飞,韩国华,李真.铁铝柱撑二硫化钼的合成与表征[J].无机材料学报,2005,20(6):1329-1336. 被引量:5
  • 2Nakamura S;Mukai T;Senoh M.查看详情[J],Applied Physics Letters19941687.
  • 3Wilson R G;Schwartz R N;Abernathy C R;Peartor S J; Newman N; Rubin M; Fu T; Zavada J M.查看详情[J],Applied Physics Letters1994992.
  • 4Steckl A J;Birkhahn R.查看详情[J],Applied Physics Letters19981700.
  • 5Steckl A J;Zavada J M.查看详情[J],MRS Bulletin199933.
  • 6Steckl A J;Heinkenfeld J C;Lee D S;Garter M J; Baker C C; Wang Y; Jones R.查看详情[J],IEEE Journal of Selected Topics in Quantum Electronics2002749.
  • 7Kim J H;Shepherd N;Davidson M;Holloway P H.查看详情[J],Applied Physics Letters2003641.
  • 8Kim J H;Davidson M R;Holloway P H.查看详情[J],Applied Physics Letters20034746.
  • 9Kim J H;Holloway P H.查看详情[J],Journal of Applied Physics20044787.
  • 10Pan X J;Zhang Z X;Jia L;Li H; Xie E Q.查看详情[J],Journal of Alloys and Compounds2008579.

共引文献89

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部