期刊文献+

平面多体机械系统的随机稳定性及Hopf分岔分析 被引量:1

Stochastic Stability and Hopf Bifurcation Behavior of Planar Multi-Body Mechanical System
下载PDF
导出
摘要 首先建立平面多体机械系统的随机非线性动力学模型,得到It随机微分方程,求解了系统响应扩散过程的转移概率密度函数相应的FPK方程.然后运用拟不可积Hamilton理论对平面多体机械系统进行Hopf分岔分析,利用Lyapunov指数和奇异边界理论对该系统的局部和全局稳定性分别进行讨论.最后通过模拟平稳概率密度函数和联合概率密度函数的图像验证了理论结果. Firstly,the stochastic nonlinear dynamic model of the multi-body mechanical system was established,the It differentiation equation and the corresponding FPK equation of the response-transition probability density function with the diffusing process were obtained. Then,the Hopf bifurcation behavior of the planar multi-body mechanical system was studied by using the quasi-nonintegrable Hamilton system theory.The conditions of local and global stability of the system were discussed by largest Lyapunov exponent and boundary category.Finally,the functional image of stationary probability density and jointly stationary probability density were simulated to verify the theorectical results.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2017年第3期354-357,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61364001)
关键词 平面多体机械系统 拟不可积Hamilton理论 随机平均法 随机稳定性 随机Hopf分岔 multi-body mechanical system quasi-nonintegrable Hamilton system theory stochastic stability stochastic Hopf bifurcation
  • 相关文献

参考文献2

二级参考文献19

  • 1Agrawal A K, Yang J N Y. Effect of fixed time delay on stability and performance of actively controlled civil engineering structures [ J ]. Earthquake Engineering and Structural Dynamics, 1997,26 : 1169--1185.
  • 2Soliman M R, Ray W H. Optimal feedback control for linear quadratic systems having time delays[J]. Inter- national Journal of Control, 1972,15 : 609--615.
  • 3Lin C C, Shen J F, Chu S Y. Time-delay effect and its solution for optimal output feedback control of struc- tures[J]. Earthquake Engineering and Structural Dy- namics, 1996,25 . 547--559.
  • 4Grigoriu M. Control of time delay linear systems with Gaussian white noise[J]. Probabilistic Engineering Me- chanics, 1997,12 : 89--96.
  • 5Klosek M M, Kuske R. Multi-scale analysis of sto- chastic delay differential equations [J]. Multi-scale Modeling and Simulation, 2005,3 : 706--729.
  • 6Fofana M S. Asymptotic stability of a stochastic delay equation VJ ]. Probabilistic Engineering Mechanics, 2002,17:385--392.
  • 7Di Paola M, Pirrotta A. Time delay induced effects on control of linear systems under random excitation[J]. Probabilistic Engineering Mechanics, 2001,16 : 43--51.
  • 8Bilello C, Dipaola M, Pirrotta A. Time delay induced effects on control of non-linear systems under random excitation[J]. Meccanica, 2002,37.207 220.
  • 9Liu Z H, Zhu W Q. Stochastic averaging of quasi-inte- grable Hamiltonian systems with delayed feedback control[J]. Journal of Sound and Vibration, 2007,299 : 178--195.
  • 10Bellman R. Dynamic Programming[M]. Princeton U- niversity Press, 1957.

共引文献5

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部