期刊文献+

基于等价类划分的并行频繁闭项集挖掘算法 被引量:1

Parallel Frequent Closed Itemsets Mining Algorithm Based on Equivalence Class Partition
下载PDF
导出
摘要 针对海量数据的关联规则挖掘问题,提出了一种有效的基于等价类划分的并行频繁闭项集挖掘算法.该算法在MapReduce框架下,通过等价类的产生与划分、数据集的分配、异步频繁闭项集挖掘和汇总等步骤,不但较好地解决了多节点间的负载均衡问题,而且易于获得可靠的频繁闭项集.实验表明,该算法能有效克服传统算法挖掘效率低、冗余规则较多的缺点,整体上具有较高的性能. For the problems of association rules mining of massive database,an effective parallel approach for the closed frequent itemsets mining based on the division of equivalence classes was presented. Under the framework of MapReduce,the proposed approach performs through three steps: 1) the division of equivalence class,2) the allocation of data set,and 3) the asynchronous mining and aggregation of frequent closed itemsets. Such a strategy can significantly solve the load balancing problem of multiple nodes and obtain the reliable frequent closed itemsets. Experimental results showed that the approach can effectively overcome the drawbacks of traditional approaches such as low efficiency of mining,more redundant rules and so on,and gain higher performance.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2017年第3期454-459,共6页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61103143) 河南省高等学校重点科研项目(15A520116 16A520105) 河南省科技攻关项目(162102210396 152102210367)
关键词 MAPREDUCE 并行挖掘算法 频繁闭项集 等价类划分 MapReduce parallel mining algorithm frequent closed itemsets equivalence class partition
  • 相关文献

参考文献5

二级参考文献49

  • 1毛国君.数据挖掘原理与算法[M].北京:清华大学出版社,2009.6.
  • 2王永恒,杨树强,贾焰.海量文本数据库中的高效并行频繁项集挖掘方法[J].计算机工程与科学,2007,29(9):110-113. 被引量:2
  • 3HAN Jia-wei, CHENG Hong, XIN Dong, et al. Frequent pattern mi- ning: current status and future directions [J]. Data Mining and Knowledge Discovery,2007,15( 1 ) :55-86.
  • 4AGRAWALR,IMIELISKIT,SWAMIA.Miningassociationrulesbetweensetsofitemsinlargedatabases[J].ACM SIGMOD Record,1993,22(2):207-216.
  • 5HANJiawei,PEIJian,YINYiwen.Miningfrequentpatternswithoutcandidategeneration[J].ACMSIGMODRecord,2000,29(2):1-12.
  • 6ZA?ANEOR,ELHAJJM,LUP.Fastparallelassociationruleminingwithoutcandidacygeneration[C]//ProcofIEEE International ConferenceonDataMining.2001:665-668.
  • 7PRAMUDIONOI,KITSUREGAWA M.ParallelFPgrowthonPCcluster[C]//Procofthe7thPacificAsiaConferenceonAdvancesinKnowledgeDiscoveryandDataMining.Berlin: SpringerVerlag,2003:467-473.
  • 8LILi,ZHAIDong,JINFan.Aparallelalgorithmforfrequentitemsetmining[C]//Procofthe4thInternationalConferenceonParallelandDistributedComputing,ApplicationsandTechnologies.2003:868-871.
  • 9DEANJ,GHEMAWATS.MapReduce:simplifieddataprocessingonlargeclusters[J].CommunicationsoftheACM,2008,51(1):107-113.
  • 10LIHaoyuan,WANGYi,ZHANGDong,etal.PFP:parallelFPGrowthforqueryrecommendation[C]//ProcofACM ConferenceonRecommenderSystems.2008:107-114.

共引文献64

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部