期刊文献+

Q345钢的热变形Arrhenius本构模型研究 被引量:4

Study on Hot Deformation Constitutive Model of Q345 Steel
下载PDF
导出
摘要 通过Gleeble-3800型热模拟机对Q345钢进行温度区间900~1100℃,应变速率0.1、1、10 s^(-1),真应变0.65的等温压缩试验。采用0.05~0.65应变量范围内数据每隔0.1建立基于物理常数的Arrhenius本构模型,并对模型预测值与试验值进行相关性分析,验证模型预测精度。结果表明:Q345钢高温流变应力随变形温度的升高而降低,随应变速率增大而升高;各应变量下的预测值与试验值相关系数均大于0.98,基于物理常数的Arrhenius本构模型具有较高的预测精度。 The isothermal compression tests of Q345 steel were implemented on Gleeble-3800 thermal simulation machine at different deformation temperatures of 900-1100 ℃ with strain rate of 0.1, 1, 10 s^-1, and true strain of 0.65. The Arrhenius constitutive model based on physical constants was established by using different strain values ranging from 0.05-0.65 with an interval of 0.1, then the correlation between the model predicted value and the experiment value was analyzed,and the prediction accuracy of the model was discussed. The results show that the high temperature flow stress of Q345 steel decreases with the increase of deformation temperature and increases with the increase of strain rate. The correlation coefficient between predicted and experiment value is greater than 0.98, so the constitutive model based on physical constant has high prediction accuracy.
出处 《热加工工艺》 CSCD 北大核心 2017年第16期56-59,共4页 Hot Working Technology
基金 国家自然科学基金资助项目(51475139) 河北省自然科学基金资助项目(E2015208105)
关键词 Q345钢 物理常数 本构模型 相关性 预测精度 Q345 steel physical constant constitutive model correlation prediction accuracy
  • 相关文献

参考文献4

二级参考文献33

  • 1BRADY G S, CLAUSER H R. Materials handbook [M]. 121h eds. New York: McGraw-Hili, 1986.
  • 2MIRZADEH H, NIROUMAND B. Fluidity of AI-Si semisolid slurries during rheocasting by a novel process [J]. Journal of Materials Processing Technology, 2009, 209: 4977-4982.
  • 3JENAB A, KARlMI TAHERI A. Experimental investigation of the hot deformation behavior of AA 7075: Development and comparison of flow localization parameter and dynamic material model processing maps [J]. International Journal of Mechanical Sciences, 2014,78: 97-105.
  • 4LU Z, PAN Q, LlU X, QIN Y, HE Y, CAO S. Artificial neural network prediction to the hot compressive deformation behavior of AI-Cu-Mg-Ag heat-resistant aluminum alloy [J]. Mechanics Research Communications, 2011, 38: 192-197.
  • 5BANERJEE S, ROBI P S, SRINIVASAN A. Prediction of hot deformation behavior of AI-5.9%Cu-0.5%Mg alloys with trace additions ofSn [1]. Journal of Materials Science, 2012,47: 929-948.
  • 6LI H Z, WANG H J, LIANG X P, LlU H T, LlU Y, ZHANG X M. Hot deformation and processing map of 2519A aluminum alloy [J]. Materials Science and Engineering A, 20 11,528: 1548-1552.
  • 7ZHANG H, LIN G Y, PENG D S, YANG L B, LIN Q Q. Dynamic and static softening behaviors of aluminum alloys during multistage hot deformation [J]. Journal of Materials Processing Technology, 2004, 148: 245-249.
  • 8M1RZADEH 1-1, CABRERA J M, NAJAFIZADEH A, CALVILLO P R. EBSD study of a hot deformed austenitic stainless steel [J]. Materials Science and Engineering A, 2012,538: 236-245.
  • 9M1RZADEH H, NAJAFIZADEH A. Prediction of the critical conditions for initiation of dynamic recrystallization [J]. Materials and Design, 2010, 31: II 74-ll 79.
  • 10MIRZADEH H, NAJAFIZADEH A. Hot deformation and dynamic recrystallization of 17-4 PH stainless steel [J]. lSI] International, 2013,53: 680-689.

共引文献24

同被引文献46

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部