期刊文献+

激光增材制造304不锈钢显微结构特征与性能研究 被引量:12

Study on Microstructure Characteristics and Properties of 304 Stainless Steel by Laser Additive Manufacturing
下载PDF
导出
摘要 针对工业领域中大量304不锈钢关键零部件需要精密修复的问题,采用激光增材制造技术在304不锈钢基材表面制备304不锈钢零件,分析了其显微结构特征、物相结构、抗电化学腐蚀性能与力学性能。结果表明,激光增材制造304不锈钢主要由γ-(Fe,C)与马氏体C_(0.055)Fe_(1.945)组成,组织细小且致密,无气孔与裂纹;激光增材制造304不锈钢的抗电化学腐蚀性能优于传统制备304不锈钢;激光增材制造304不锈钢的屈服强度与抗拉强度约为传统制造304不锈钢的1.24倍与1.22倍;激光增材制造304不锈钢的伸长率相对传统制造304不锈钢提高了16.7%。 In order to resolve the problems of repairing large amounts of 304 stainless steel components in industry, 304 stainless steel(SS) was produced on the traditional producing 304 stainless steel by laser additive manufacturing(LAM). The microstructure, phase constituents, electrochemical resistance and mechanical properties of 304 SS by LAM were analyzed.The results show that 304 SS by LAM is composed of γ-(Fe, C) and martensite C(0.055)Fe(1.945) and the microstructure is fine and dense, and without pores and cracks. The electrochemical resistance of 304 SS by LAM is much better than that of the traditional producing 304 SS. The yield strength and tensile strength of 304 SS by LAM are 1.24 and 1.22 times higher than those of the traditional 304 SS. Additionally, the elongation of 304 SS by LAM increases 16.7% compared with that of the traditional producing 304 SS.
出处 《热加工工艺》 CSCD 北大核心 2017年第16期83-86,共4页 Hot Working Technology
基金 国家自然科学基金资助项目(50901040) 江西省杰出青年基金资助项目(20162BCB23039)
关键词 激光增材制造 304不锈钢 显微组织 电化学腐蚀 laser additive manufacturing(LAM) 304 stainless steel(SS) microstructure electrochemical corrosion
  • 相关文献

参考文献3

二级参考文献27

  • 1冯莉萍,黄卫东,林鑫,杨海欧,陈大融.基材晶体取向对激光定向凝固单晶显微组织的影响[J].应用激光,2004,24(3):135-138. 被引量:6
  • 2苏彦庆,郭景哲,刘畅,郭景杰,贾均,傅恒志.定向凝固技术与理论研究的进展[J].特种铸造及有色合金,2006,26(1):25-30. 被引量:40
  • 3崔爱永,胡芳友,回丽.钛合金表面激光熔覆(Ti+Al/Ni)/(Cr_2O_3+CeO_2)复合涂层组织写耐磨性能[J].中国激光,2007,34(3):438-441. 被引量:37
  • 4Cho S, Kikuchi K, Miyazaki T, etal. Multiwalled carbon nanotubes as a contributing reinforcement phase for the im- provement of thermal conductivity in copper matrix com- posites[J]. Seripta Materialia, 2010, 63(4): 375-378.
  • 5Yavari F, Fard H R, Pashayi K, et al. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives E J3. The ]our- hal of Physical Chemistry C, 2011, 115(17): 8753-8758.
  • 6Shahil K M, Balandin A A. Graphene-multilayer graphenenanocomposites as highly efficient thermal interface materi- als[J]. Nano Letters, 2012, 12(2):861-867.
  • 7Kim C, Lira B, Kim B, et al. Strengthening of copper ma- trix composites by nickel- coated single- walled carbon nanotube reinforcements[J].Synthetic Metals, 2009, 159 (5) : 424-429.
  • 8Liu Q, He X B, Ren S B, et al. Thermophysical properties and rnicrostructure of graphite flake/copper composites processed by electroless copper coating[J]. Journal of Al- loys ~ Compounds, 2014, 587(3): 255-259.
  • 9Firkowska I, Boden A, Vogt A M, et al. Effect of carbon nanotube surface modification on thermal properties of cop- per-CNT composites [J]. Journal of Materials Chemistry, 2011, 21(43): 17541-17546.
  • 10Chu K, Wu Q, Jia C, et al. Fabrication and effective ther- mal conductivity of multi-walled carbon nanotubes rein- forced Cu matrix composites for heat sink applications [J]. Composites Science ~ Technology, 2010, 70 (2).. 298- 304.

共引文献28

同被引文献144

引证文献12

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部