期刊文献+

基于粒子滤波方法的GPS/DR组合导航仿真研究 被引量:1

Emulation Research on GPS/DR Integrated Navigation Algorithm Based on Particle Filter
下载PDF
导出
摘要 传统车载导航系统大多基于全球定位系统(Global Positioning System,GPS)实现,GPS导航系统能为车辆提供位置信息,但是在都市复杂环境下所表现出的导航质量难以满足人们对导航性能更高的要求。针对目前车载导航系统在导航精度和可靠性方面所存在的问题,应用GPS与航位推算(Dead Reckoning,DR)相结合的组合导航算法,以及粒子滤波算法进行后处理,以提高导航系统的精度、连续性。实验结果表明GPS/DR组合导航系统在导航时可以达到预定的精度,当GPS信号中断时,车辆依然可以实现导航定位,但随着GPS信号中断时间的延长,误差随之增大。 The traditional navigation mainly based on GPS which provides 3-d position for vehicles has tremendous difficulty in satisfying the stricter requirements for navigation performance in the complex environment of cities. To solve the problem of the navigation accuracy and the reliability of current vehicle navigation,The integrated navigation which combines GPS and DR has been applied to improve the accuracy and continuity of the navigation system. The post-processing method is particle filter. The re-sults show that GPS/DR integrated navigation system can achieve scheduled accuracy. When the GPS signal is broke off,navigation is still effected. However,with the extension of the interrupted time of the GPS signal,the error will also increase.
出处 《计算机与数字工程》 2017年第8期1539-1542,共4页 Computer & Digital Engineering
基金 中央高校基本科研业务费专项资金项目(编号:2015830114)资助
关键词 导航 GPS/DR 粒子滤波 航位推算 navigation GPS/DR particle filter dead reckoning
  • 相关文献

参考文献2

二级参考文献66

  • 1宁晓琳,房建成.一种基于UPF的月球车自主天文导航方法[J].宇航学报,2006,27(4):648-653. 被引量:23
  • 2汤琦,黄建国,杨旭东,冯西安.基于粒子滤波的被动多基站跟踪算法(英文)[J].宇航学报,2007,28(2):375-379. 被引量:1
  • 3Orton M, Fitzgerald W. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters[J]. IEEE Trans. Signal Processing, 2002, 50(2): 216-223.
  • 4Hue C, J Le Cadre, P' erez P. Tracking multiple objects with particle filtering[J]. IEEE Trans. Aerospace and Electronic Systems, 2002, 38(3) : 791 - 812.
  • 5Li Ping, Kadirkamanathan V. Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems[J]. IEEE Trans. Systems, Man and Cybernetics-Part C, 2001, 31(3): 337 - 343.
  • 6Andrieu C, Doucet A, Singh S S, et al. Particle methods for change detection, system identification, and control [J]. Proc. IEEE, 2004, 92(3) : 423 - 438.
  • 7程水英.空对海单站无源跟踪中的免微分算法研究[D].合肥:电子工程学院博士论文,2006,4.
  • 8Rudolph van der Merwe, Doucet Arnaud, Nando de Freitas, et al. The Unscented Particle Filter[R]. Cambridge: Cambridge University Engineering Department, Aug. 2000.
  • 9Haug A J. A tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes [R]. Mclean : MITRE Corporation, Jan. 2005.
  • 10Marshall A. The use of multi-stage sampling schemes in Monte Carlo computations[C]// Meyer M. Symposium on Monte Carlo Methods. New York: 1956:123 - 140.

共引文献103

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部