期刊文献+

基于激光雷达的无人驾驶汽车道路、交通标志与障碍物识别方法 被引量:2

Recognition methods of road,traffic sign and obstacle for unmanned cars based on laser radar
下载PDF
导出
摘要 在无人驾驶汽车技术中,现有的传统雷达容易受扫描角度和距离及复杂环境的影响,探测精度较低,同时使用传统的几何轮廓特征和运动状态特征的方法,无人驾驶汽车对环境的感知能力特别是障碍物的识别率和准确性也较低。针对这些不足,文章首先从道路、交通标志方面提出一种视觉感知方法,以及一种基于激光雷达的时空特征向量的障碍物识别方法来提高无人驾驶汽车对环境特别是障碍物的识别率和准确性。 In unmanned vehicle technology, traditional radar is easily affected by the scanning angle, distance and complex environment, detection accuracy is low, at the same time, when using methods with geometric contour and motion characteristics, the perception ability of unmanned vehicles to environment, especially the recognition rate and accuracy of obstacle is also low. In order to solve these problems, this paper puts forward a method of visual perception, and an obstacle recognition method of spatio temporal feature vectors based on laser radar from the road and traffic signs, to improve the unmanned cars on the environment, especially the obstacle recognition rate and accuracy.
作者 戴燕玲
出处 《无线互联科技》 2017年第17期5-6,共2页 Wireless Internet Technology
关键词 视觉感知 激光雷达 时空特征向量 visual perception laser radar spatio-temporal feature vectors
  • 相关文献

参考文献1

二级参考文献11

  • 1陈福增.多传感器数据融合的数学方法[J].数学的实践与认识,1995,25(2):11-16. 被引量:76
  • 2Petrovskaya A, Thrun S. Model based vehicle detection andtracking for autonomous urban driving[Jj. Autonomous Robots,2009,26(2/3): 123-139.
  • 3Momemerlo M, Becker J, Bhat S, et al. Junior: The Stanfordentry in the urban challenge[J|. Journal of Field Robotics, 2008,25(9): 569-597.
  • 4Ferguson D, Darms M, Urmson C, et al. Detection, predic-tion, and avoidance of dynamic obstacles in urban environ-ments[C]//lEEE Intelligent Vehicles Symposium. Piscataway,USA: IEEE, 2008: 1149-1154.
  • 5Urmson C, Anhalt J, Bagnell D, et al. Autonomous driving inurban environments: Boss and the urban challengejj]. Journalof Field Robotics, 2008,25(8): 425-466.
  • 6Mertz C, Navarro-Serment L E, MacLachlan R, et al. Mov-ing object detection with laser scanners[J]. Journal of FieldRobotics, 2013,30(1): 17-43.
  • 7Dorai C, Wang G,Jain A K, et al. Registration and integra-tion of multiple object views for 3D model construction|J].IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 1998,20(1): 83-89.
  • 8Hirnmelsbach M, Muller A,Liittel T, et al. LIDAR-based 3D ob-ject perception [C ]//Proceedings of 1st International Workshopon Cognition for Technical Systems. 2008.
  • 9Pears N E. Feature extraction and tracking for scanning rangesensors[J]. Robotics and Autonomous Systems, 2000, 33(1):43-58.
  • 10Tubbs J D. A note on binary template matching[J].PatternRecognition, 1989,22(4): 359-365.

共引文献33

同被引文献19

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部