期刊文献+

基于双模态深度自编码的孤立性肺结节诊断方法 被引量:8

Pulmonary Nodule Diagnosis Using Dual-modal Denoising Autoencoder Based on Extreme Learning Machine
下载PDF
导出
摘要 近年来,深度学习技术在肺癌诊断方面得到了广泛的应用,但现有的研究主要集中于肺部CT图像。为了有效提高肺结节的诊断性能,提出一种基于双模态深度降噪自编码的肺结节诊断方法。首先,分别从肺部CT和PET图像中得到肺结节区域的特征信息;然后,以候选结节的PET/CT图像作为整个深度自编码网络的输入,并对高层信息进行学习;最后,采用融合策略对多种特征进行融合并将其作为整个框架的输出。实验结果表明,提出的方法可以达到92.81%的准确率、91.75%的敏感度和1.58%的特异性,且优于其他方法的诊断性能,更适用于肺结节良/恶性的辅助诊断。 The existing deep learning framework used in diagnosing lung cancer still mainly focuses on lung Computed Tomography(CT)images,but it cannot obtain more higher diagnostic rate,when using only one images in the process of daily diagnosis.Therefore,in this paper,a new pulmonary nodule diagnosis method using dual-modal combined with CT and Positron Emission Tomography(PET)deep denoising autoencoder based on extreme learning machine(SDAEELM)was proposed to improve the diagnostic performance effectively.First of all,the method gets discriminative features information separate from the input data CT and PET.Secondly,it inputs CT and PET about candidate lung respectively in whole network.Thirdly,it extracts the high level discriminative features of nodules by alternating stack denoising autoencoder layers.Finally,it makes the fusion strategy of multi-feature fusion as the output of the whole framework.The experiment results show that classification accuracy of the proposed method can reach 92.81%,sensitivities up to 91.75% and specificity up to 1.58%.Meanwhile,the method achieves better discriminative results and is highly suited to be used for pulmonary nodule diagnosis.
作者 赵鑫 强彦 葛磊 ZHAO Xin QIANG Yah GE Lei(College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Chin)
出处 《计算机科学》 CSCD 北大核心 2017年第8期312-317,共6页 Computer Science
基金 国家科学自然基金项目:基于医学影像结构和功能混合特征的周围型肺癌计算机辅助诊断方法(61373100) 北京航空航天大学虚拟现实技术与系统国家重点实验室开放基金(BUAA-VR-17KF-14 BUAA-VR-17KF-15) 山西省回国留学人员科研资助项目(2016-038)资助
关键词 降噪自编码 双模态 深度学习 极限学习机 肺结节辅助诊断 Denoising autoencoder Dual-modal Deep learning Extreme learning machine Pulmonary nodule diagnosis
  • 相关文献

参考文献2

二级参考文献15

  • 1宋伟,金征宇,严洪珍,王沄,张云庆,王林辉,朱海峰,梁继祥,齐兵.初步评估16层螺旋CT的Lung Care软件在肺结节研究中的辅助价值[J].中华放射学杂志,2005,39(1):11-16. 被引量:24
  • 2薛以锋,鲍旭东,马汉林,吴磊.基于CT图像的肺结节计算机辅助诊断系统[J].中国医学物理学杂志,2006,23(2):93-96. 被引量:15
  • 3王晓华,马大庆.计算机辅助诊断在肺结节中的应用进展[J].中华放射学杂志,2006,40(4):443-445. 被引量:14
  • 4聂生东,郑斌,李雯.CT图像肺结节计算机辅助检测与分类系统设计(英文)[J].系统仿真学报,2007,19(5):935-944. 被引量:14
  • 5高园园,吕庆文,郭宏,冯前进,陈武凡.一种新的肺结节检测算法[J].计算机工程与应用,2007,43(23):198-199. 被引量:6
  • 6S Armato III, M Giger, H MacMahon. Automated detection of lung nodule in CT scans: preliminary results [J]. Med. Phys. (S0094-2405), 2001, 28(8): 1552-1561.
  • 7Yongbum Lee, Takeshi Hara, Hiroshi Fujita, et al. Automated Detection of Pulmonary Nodules in Helical CT Images Based on and Improved Template-Matching Technique [J]. IEEE Trans Medical Imaging (S0278-0062), 2001, 20(7): 595-603.
  • 8Kyongtae T Bae, Jin-Sung Kim, Yong-Hum Na, et al. Pulmonary Nodules: Automated Detection on CT Images with Morphologic Matching Algorithm-Preliminary Results [J]. Radiology (S0500-7208), 2005, 236(6): 286-294.
  • 9David S Paik, Christopher F, Beaulieu, et al. Surface Normal Overlap A Computer-Aided Detection Algorithm With Application to Colonic Polyps and Lung Nodules in Helical CT [J]. IEEE Trans Medical Imaging (S0278-0062), 2004, 23(6): 661-675.
  • 10Qiang Li, Shusuke Sone, Kunio Doi. Selective Enhancement Filters for Nodules, Vessels, and Airway Walls in Two- and Three- dimensional CT Scans [J]. Med Phys (S0094-2405), 2003, 30(1): 2040-2051.

共引文献16

同被引文献33

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部