期刊文献+

碳纳米管阵列超双疏性质的发现 被引量:27

DISCOVERY OF SUPER-AMPHIPHOBIC PROPERTIES OF ALIGNED CARBON NANOTUBE FILMS
原文传递
导出
摘要 用高温裂解酞菁金属络合物方法制备了几种具有不同形貌的阵列碳纳米管膜 ,并对其超疏水和超双疏性质进行了研究 .对于具有均匀长度和外径的阵列碳纳米管膜 ,文章作者发现 ,在未经任何处理时 ,其表现出超疏水和超亲油性质 ,与水的接触角为 15 8 5± 1 5° ,与油的接触角为 0± 1 0°.经氟化处理后 ,则表现出超双疏性质 ,与水和油的接触角分别为 171± 0 5°和 16 1± 1 0° .对具有类荷叶结构的阵列碳纳米管膜 ,其表面形貌与荷叶的十分接近 ,且在未经任何处理时所表现出的超疏水性也与荷叶的非常接近 ,与水的接触角为 16 6° ,滚动角为 8° .这种超疏水和超双疏性质是由表面的纳米结构以及微米结构和纳米结构的结合产生的 .这一发现为无氟超疏水表面 Several kinds of aligned carbon nanotube(ACNT) films with different morphologies were prepared by pyrolysis of metal phthalocyanines. Super\|hydrophobic and super\|amphiphobic properties were studied in detail. The ACNT films with fairly uniform length and external diameter showed super\|hydrophobic and super\|oileophilic properties, with contact angles(CAs) of 158\^5±1\^5° and 0±1\^0° for water and rapeseed oil respectively. After fluorination treatment, these angles became 171±0\^5° and 161±1\^0°, respectively, showing both super\|hydrophobic and super\|oileophobic properties, typical of a super\|amphiphobic surface. For ACNT films with lotus\|like structures, not only was the morphology close to that of lotus leaves, but their super\|hydrophobic properties were almost the same also. The CA and sliding angle for water of this kind of films were 166° and 8°,respectively. These super\|hydrophobic and super\|amphiphobic properties are caused by the nanostructures and the combination of nanostructures and microstructures on the surface. This discovery may provide a new method to study super\|hydrophobic surface/interface materials without fluorine.
出处 《物理》 CAS 北大核心 2002年第8期483-486,共4页 Physics
基金 国家重点基础研究项目 (批准号 G19990 64 5 0 4) 国家自然科学基金重大项目 (批准号 :2 9992 5 3 0)
关键词 碳纳米管阵列 超双疏性质 阵列碳纳米管膜 超疏水 超双疏材料 纳米结构 浸润性 aligned carbon nanotube films, super\|hydrophobic, super\|amphiphobic
  • 相关文献

参考文献12

  • 1[1]Jiang L,Wang R,Yang B et al.Pure Appl.Chem.,2000,72:73
  • 2[2]Nishino T,Meguro M,Nakamae K et al.Langmuir,1999,15:4321
  • 3[3]Wenzel R N.Ind.Eng.Chem.,1936,28:988
  • 4[4]Wenzel R N.J.Phys.Chem.,1949,53:1466
  • 5[5]Cassie A B D.Discuss.Faraday Soc.,1948,3:11
  • 6[6]Dujardin E,Ebbesen T W,Hiura H et al.Science,1994,265:1850
  • 7[7]Dujardin E,Ebbesen T W,Krishnan A et al.Adv.Mater.,1998,10:1472
  • 8[8]Wang X B,Liu Y Q,Zhu D B.Appl.Phys.A,2000,71:347
  • 9[9]Adamson A W,Gast A P.Physical Chemistry of Surfaces(6th ed).New York:John Wiley & Sons,1997.358\_359
  • 10[10]Wildoer J W G,Venima L C,Rinzler A G et al.Nature,1998,391:59

同被引文献396

引证文献27

二级引证文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部