期刊文献+

基于噪声概率的多核集成算法 被引量:1

A Noise-Probability Based Multiple Kernel Boosting Algorithm
下载PDF
导出
摘要 为解决多核集成(Multiple Kernel Boosting,MKBoost)算法对噪声敏感的问题,考虑理想分类器区别对待正常样本与噪声样本的特点,提出了一种适用于被噪声污染数据集的多核集成算法.采用KNN(K最近邻)方法与logistic回归的融合,构造了样本噪声概率函数,计算出每个样本是噪声的概率,根据噪声概率构造了新的损失函数,利用加法模型得到每轮迭代的基分类器系数.UCI数据集上的实验结果表明,该算法可以有效降低多核集成算法对噪声的敏感程度,提高了鲁棒性. Abstract: To solve the problem that the Multiple Kernel Boosting (MKBoost) algorithm was sensitive to noise, the characteristic that noise data and normal data were treated differently by the optimal classifier was considered, and a MKBoost algorithm applied to datasets polluted by noise data was proposed. The fuse of KNN (K-nearest neighbor) algorithm and logistic regression was used for the construction of noise probability function, and calculating the probability of each instance being noise. A new loss function was constructed via the noise probability function, and addictive model was utilized for computing the coefficients corresponded to base classifier in each iteration. Experiments on the datasets from UCI show that the proposed method could efficiently reduce the sensitivity of MKBoost algorithm to noise, and improved the robustness
出处 《微电子学与计算机》 CSCD 北大核心 2017年第9期63-66,共4页 Microelectronics & Computer
基金 国家自然科学基金(61572112)
关键词 多核学习 提升方法 K最近邻法 LOGISTIC回归 支持向量机 鲁棒性 multiple kernel learning boosting method KNN logistic regression SVM robustness
  • 相关文献

参考文献2

二级参考文献27

  • 1Zhou Yatong Zhang Taiyi Li Xiaohe.MULTI-SCALE GAUSSIAN PROCESSES MODEL[J].Journal of Electronics(China),2006,23(4):618-622. 被引量:4
  • 2Pan S J, Tsang IW, Kwok JT, Yang Q. Domain adaptation via transfer component analysis. IEEE Trans. on Neural Networks, 2011, 22(2):199-210. [doi: 10.1109/TNN.2010.2091281].
  • 3Xiang EW, Cao B, Hu DH, Yang Q. Bridging domains using world wide knowledge for transfer learning. IEEE Trans. on Knowledge and Data Engineering, 2010,22(6):770-783. [doi: 10.1109/TKDE.2010.31 ].
  • 4Joachims T. Transductive inference for text classification using support vector machines. In: Bratko I, Dzeroski S, eds. Proc. of the 16th Int'l Conf. on Machine Learning (ICML'99). Morgan Kaufmann Publishers, 1999.200-209.
  • 5Bruzzone L, Marconcini M. Domain adaptation problems: A DASVM classification technique and a circular validation strategy. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010,32(5):770-787. [doi: 10.1109/TPAMI.2009.57].
  • 6Quanz B, Huan J. Large margin transductive transfer learning. In: Proc. of the 18th ACM Conf. on Information and Knowledge Management (CIKM). New York: ACM Press, 2009. 1327-1336. [doi: 10.1145/1645953.1646121].
  • 7Ben-David S, Blitzer J, Crammer K, Pereira F. Analysis of representations for domain adaptation. In: Proc. of the NIPS. MIT Press, 2007.
  • 8Ling X, Dai W, Xue G, Yang Q, Yu Y. Spectral domain transfer learning. In: Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2008. [doi: 10.1145/1401890.1401951 ].
  • 9Dai W, Xue GR, Yu Y. Co-Clustering based classification for out-of-domain documents. In: Proc. of the 13th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. San Jose: ACM Press, 2007.210-219. [doi: 10.1145/1281192.1281218].
  • 10Sriperumbudur BK, Gretton A, Fukumizu K, Scholkopf B, Lanckriet GG. Hilbert space embeddings and metrics on probability measures. Journal o f Machine Learning Research, 2010,11 (3): 1517-1561.

共引文献161

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部