期刊文献+

基于分块Radon尺度变换信息增强的图像融合技术

Image Fusion Technology Based on Block Radon Scale Transform Information Enhancement
下载PDF
导出
摘要 在对目标图像采集模糊性较强或者姿态变化幅度较大的情况下,目标准确识别精度不高,为了提高目标图像的准确识别率,提出一种基于分块Radon尺度变换信息增强的图像融合技术进行目标识别的方法.对采集的模糊目标图像进行小波降噪处理,对降噪输出的图像进行自适应模板匹配,结合图像分割方法将目标图像进行分块,利用Radon尺度变换的几何特征不变性对目标的关键特征点进行信息增强,实现特征点优化提取和目标准确辨识.以实际采集的光学图像和对地遥感图像为测试样本进行实验分析,仿真结果表明,采用该方法进行图像融合处理,提高了成像质量,对图像目标融合识别的准确性较好,且能满足大批量样本目标快速识别的应用需求. Abstract: In the target image acquisition of fuzzy strong or attitude change greatly under the condition ot accurate target recognition accuracy is not high, in order to improve the accuracy of target image recognition rate, we propose an image block Radon transform enhanced information fusion technology. The target recognition based on fuzzy objective image wavelet denoising image processing the noise output of the adaptive template matching, image segmentation method combined with the target image is divided into blocks, using geometric invariant feature Radon wavelet transform key feature points on the target information enhancement, realize the feature points extraction and optimization target. To accurately identify the optical remote sensing image collected as test samples for experimental analysis, simulation the results show that using the method of image fusion, improve the image quality, the image fusion of target recognition with good accuracy, And it can meet the application requirements of the rapid identification of the large number of samples.
作者 张荆沙
出处 《微电子学与计算机》 CSCD 北大核心 2017年第9期121-125,共5页 Microelectronics & Computer
关键词 Radon尺度变换 分块 图像 目标识别 降噪 radon scale transform block image target recognition noise reduction
  • 相关文献

参考文献9

二级参考文献117

  • 1狄红卫,刘显峰.基于结构相似度的图像融合质量评价[J].光子学报,2006,35(5):766-771. 被引量:65
  • 2崔洪州,孔渊,周起勃,潘兆鑫,葛军.基于畸变率的图像几何校正[J].应用光学,2006,27(3):183-185. 被引量:30
  • 3刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 4Simone G, Farina A, Morabito F C, et al.lmage fusion techniques for remote sensing applications[J].Information Fusion, 2002, 3(1):3-15.
  • 5Pohl C, Genderen J L.Multisensor image fusion in remote sensing: concepts, methods, and applications[J].International Journal of Remote Sensing, 1998,19(5) :823-854.
  • 6Hu Jianwen, Li Shutao, Yang Bin.Remote sensing image fusion based on IHS transform and sparse representation[C]//Proceedings of the 2010 Chinese Conference on Pattern Recognition(CCPR), 2010:1-4.
  • 7Liu J G.Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details[J]. Int J Remote Sensing, 2000,20(18) : 3461-3472.
  • 8Yang Bing, Li Shutao.Multifocus image fusion and restoration with sparse representation[J].IEEE Transaction on Information Theory Instrumentation and Measurement, 2010,59(4) : 884-892.
  • 9Donoho D, Elad M.Optimally sparse representation in general (non-orthogonal) dictionaries via 11 minimization[J].Proc Nat Aca Sci,2003,100:2197-2202.
  • 10Mallat S, Zhang Z.Matching pursuits with time-frequency dic- tionaries[J].IEEE Transactions on Signal Processing, 1993, 41 (12) : 3397-3415.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部