期刊文献+

跨类型的学术资源优质推荐算法研究 被引量:8

Research on Cross-Type Excellent Recommendation Algorithm for Academic Resources
下载PDF
导出
摘要 提出一种新的融合内容特征和非内容特征以及用户行为的推荐算法ER(Excellent Recommendation),快速准确地为用户推荐感兴趣的、高质量的5类学术资源,以实现学术资源的优质推荐。ER算法从资源类型、学科分布、关键词分布和LDA(Latent Dirichlet Allocation)主题分布共4个内容特征对5类学术资源建模,融合用户行为后进行用户兴趣偏好建模,根据权威度、社区热度和时新度等3个非内容特征对学术资源的质量值进行评估,最终根据学术资源的兴趣值和质量值进行Top-N推荐。通过预测准确度对推荐结果进行评估,实验表明ER算法的推荐效果最佳,证明了ER算法的有效性。 Excellent recommendation (ER), a new recommendation algorithm that fuses content ann non-content fea- tures and user behaviors, is proposed to enable users to obtain high quality and multiple types of academic resources of interest quickly and accurately. In the ER method, academic resources will be modeled using four content features including resource type, subject distribution, keyword distribution, and LDA (Latent Dirichlet Allocation) topic dis- tribution. Based on the user behaviors and resource model, user interest will be modeled. The quality of academic resources is calculated using three non-content features including authority, community popularity, and freshness. Finally, top-N recommendations are provided according to the recommendation degree, which is calculated by the interest value and quality of academic resources. The prediction accuracy (precision) is applied to evaluate the per- formance of the ER method and the experimental results show that our approach is the best, thus verifying the validity of the ER method.
出处 《情报学报》 CSSCI CSCD 北大核心 2017年第7期715-722,共8页 Journal of the China Society for Scientific and Technical Information
基金 国家社会科学基金项目/后期资助项目"学术型大数据知识组织与服务标准研究"(15FTQ002) 省部级实验室/开放基金"数字图书馆知识组织与标引标准规范研究"(B2014)
关键词 学术推荐 用户行为 兴趣值 质量值 推荐度 academic recommendation user behavior interest value quality value recommendation degree
  • 相关文献

参考文献2

二级参考文献10

共引文献15

同被引文献91

引证文献8

二级引证文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部