期刊文献+

基于概念格的异构数据知识发现方法 被引量:3

Knowledge Discovery Method for Heterogeneous Data Based on Concept Lattice
下载PDF
导出
摘要 基于概念格的知识发现方法已被广泛关注,同时也吸引了众多学者的研究兴趣,特别是决策形式背景的知识发现,近年来取得了一些重要的研究成果。然而,现有的知识发现方法在面临大数据环境时,缺乏可行性与有效性。考虑到异构性是大数据的主要数据特征之一,针对异构数据,研究了基于概念格的知识发现方法。具体地,提出了异构形式背景及其概念格,通过异构形式背景定义了异构决策形式背景,进一步在异构决策形式背景上讨论了规则提取问题,并给出了挖掘非冗余决策规则的有效算法。 Recently,much attention has been paid to concept-lattice-based knowledge discovery methods. In the mean- while, this topic has attracted many research interests from the communities of formal concept analysis and rough set theory. Especially, in recent years, some substantial progresses have been made on studying formal decision contexts. However, the existing knowledge discovery methods are lack of feasibility and effectiveness when they are applied to big data. Considering that heterogeneity is one of the main characteristics of big data, this paper investigated concept-lattice based knowledge discovery methods for heterogeneous data. Specifically, the notion of a heterogeneous formal context was proposed as well as its corresponding concept lattice, heterogeneous formal contexts were further employed to de fine heterogeneous formal decision contexts, and rule acquisition was discussed. Moreover, an algorithm of mining non- redundant decision rules h'om a heterogeneous formal decision context was explored.
出处 《计算机科学》 CSCD 北大核心 2017年第9期62-66,共5页 Computer Science
基金 国家自然科学基金(61305057 61562050 61573173)资助
关键词 概念格 异构形式背景 异构决策形式背景 知识发现 Concept lattice, Heterogeneous formal context, Heterogeneous formal decision context,Knowledge discovery
  • 相关文献

参考文献5

二级参考文献57

共引文献336

同被引文献39

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部