期刊文献+

Weighted Oscillation and Variation Inequalities for Singular Integrals and Commutators Satisfying Hrmander Type Conditions 被引量:1

Weighted Oscillation and Variation Inequalities for Singular Integrals and Commutators Satisfying Hrmander Type Conditions
原文传递
导出
摘要 This paper is devoted to investigating the weighted LP-mapping properties of oscillation and variation operators related to the families of singular integrals and their commutators in higher dimension. We establish the weighted type (p, p) estimates for 1 〈 p 〈 ∞ and the weighted weak type (1, 1) estimate for the oscillation and variation operators of singular integrals with kernels satisfying certain HSrmander type conditions, which contain the Riesz transforms, singular integrals with more general homogeneous kernels satisfying the Lipschitz conditions and the classical Dini's conditions as model examples. Meanwhile, we also obtain the weighted LP-boundeness for such operators associated to the family of commutators generated by the singular integrals above with BMO(Rd)-functions. This paper is devoted to investigating the weighted LP-mapping properties of oscillation and variation operators related to the families of singular integrals and their commutators in higher dimension. We establish the weighted type (p, p) estimates for 1 〈 p 〈 ∞ and the weighted weak type (1, 1) estimate for the oscillation and variation operators of singular integrals with kernels satisfying certain HSrmander type conditions, which contain the Riesz transforms, singular integrals with more general homogeneous kernels satisfying the Lipschitz conditions and the classical Dini's conditions as model examples. Meanwhile, we also obtain the weighted LP-boundeness for such operators associated to the family of commutators generated by the singular integrals above with BMO(Rd)-functions.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第10期1397-1420,共24页 数学学报(英文版)
基金 Supported by the NNSF of China(Grant Nos.11371295 and 11471041) the NSF of Fujian Province of China(Grant No.2015J01025) Foundation for Doctors of Yili Normal College(Grant No.2017YSBS09)
关键词 OSCILLATION VARIATION singular integrals COMMUTATORS BMO functions HSrmander con-ditions Muckenhoupt weights Oscillation, variation, singular integrals, commutators, BMO functions, HSrmander con-ditions, Muckenhoupt weights
  • 相关文献

参考文献2

二级参考文献11

  • 1Bourgain, J.: Pointwise ergodic theorem for arithmetic sets. Publications Mathematiques de L'I.H.E.S. tome 69, 1989, 5-41.
  • 2Campbell, J., Jones, R., Reinhold, K., Wierdl M.: Oscillation and variation for the Hilbert transform. Duke Math. J., 105, 59-83 (2000).
  • 3Akcoglu, M., Jones, R., Schwartz, P.: Variation in probability, ergodic theory and analysis. Illinois J. Math., 42(1), 154-177 (1998).
  • 4Gillespie, T., Torrea, J. L.: Dimension free estimates for the oscillation of Riesz transform. Israel J. Math., 141, 125-144 (2004).
  • 5Harboure, E., Maclas, R. A., Menarguez, M. T., Torrea, J. L.: Oscillation and variation for the Gaussian Riesz transforms and Poisson integral. Proc. Royal Soc. Edinburgh, 135, 85-104 (2005).
  • 6Harboure, E., Torrea, J. L., Viviani, B.: Vector-valued extensions of operators related to the Ornstein- Uhlenbeck semigroup. J. Anal. Math., 91, 1-29 (2003).
  • 7Thangavelu, S.: Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton University Press, Princeton, 1993.
  • 8Stempak, K., Torrea, J. L.: Poisson integrals and Riesz transforms for Hermite function expansions with weights. J. Funct. Anal., 202, 443-472 (2003).
  • 9Muckenhoupt, B.: Hermite conjugate expansions. Trans. Amer. Math. Soc., 139, 243-260 (1969).
  • 10Sjogren, P.: On the maximal function for the Mehler kernel. In: Harmonic Analysis, Cortona 1982, Lecture Notes in Mathematics 992, Springer, Berlin, 1983, 73-82.

共引文献4

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部