摘要
在耦合模理论的基础上 ,分析了线性周期结构的色散关系 ,给出了一维无限长的克尔类非线性介质周期结构中的慢布拉格类孤子解。并且指出 ,增加脉冲能量会导致群速度色散效应增强。在非线性作用下 ,禁带宽度会变小 ,波的频率也会发生偏移 ,其偏移量主要取决于失谐因子、传播速度。
On the basis of coupled mode theory the linear dispersion relation in an infinite one dimensional periodic structure is given and then a class of slow Bragg soliton like solutions is found by introducing the nonlinearity. It is shown that an increase of intensity will lead to strengthen the effect of group velocity dispersion. Because of the nonlinearity, the width of stop band structure decreases, and the pulse attains an instantaneous frequency which depends on the detuned parameter, velocity, intensity and nonlinear coefficient.
出处
《光学学报》
EI
CAS
CSCD
北大核心
2002年第8期962-966,共5页
Acta Optica Sinica