期刊文献+

同阶子群个数的集合为{1,m}的幂零群

Nilpotent Groups with Set of the Number of Same Order Subgroups {1, m}
下载PDF
导出
摘要 把同阶的子群看作一类,并用n(G)表示G的同阶子群个数的集合.通过数量分析对n(G)={1,m}的幂零群进行了分类,完善了相关工作,得到了相关结果:如果G为有限幂零群且n(G)={1,m},那么G=H×P,这里H为G的循环正规Hall子群,P为G的Sylow p-子群.另外,下面结论之一成立:1)m=1+p,P同构于Cpn-1×Cp,Q8,M(n-1,1)(除D8)中的某一个,这里M(n-1,1)=<a,b apn-1=bp=1,ab=a1+pn-2>;2)m=1+p+p^2,P同构于C_p×C_p×C_p,M(2,1)*Cp2中的某一个,这里"*"表示中心积,M(2,1)=<a,b ap2=bp=1,a^b=a^(1+p)>. Subgroups with the same order are seen as one class. Let n(G) be the set of the number of subgroups with the same order. This paper classify the nilpotent groups with n(G) = {1, m} by the analysis of quantity. And this work perfects the existing result. The main result is as following: if G is a finite nilpotent group and n(G) = {1, m}, then G = H x P, where H is the cyclic normal Hall-subgroup of G and P is the Sylow p-subgroup of G. Moreover, one of the following statements holds: 1 ) m = 1 + p, P is one of the following groups: Cpn-1×Cp,Q8,M(n-1,1) except Ds, whereM(n-1,1)=〈a,b|a^p^n-1=b^p=1,a^b=a^1+p^n-2〉;2)m=1,p+p^2, P is one of the following groups: Cp×Cp×Cp,M(2,1)*Cp2, where "*" denotes the central product and M(2,1)=〈a,b|^p^2=b^p=1,a^b=a^1+p〉.
作者 戴雪 张庆亮 DAI Xue ZHANG Qingliang(School of Sciences, Nantong University, Nantong 226019, China)
机构地区 南通大学理学院
出处 《南通大学学报(自然科学版)》 CAS 2017年第2期63-65,共3页 Journal of Nantong University(Natural Science Edition) 
基金 国家自然科学基金项目(11401324)
关键词 同阶子群 幂零群 有限群 same order subgroups nilpotent group finite group
  • 相关文献

参考文献2

二级参考文献15

  • 1ZHANG QinHai & QU HaiPeng School of Mathematics and Computer Sciences, Shanxi Normal University, Linfen 041004, China.On Hua-Tuan's conjecture[J].Science China Mathematics,2009,52(2):389-393. 被引量:6
  • 2Brandl R. Groups with few non-normal subgroups [J]. Comm Algebra, 1995, 23(6) :2091-2098.
  • 3Mousavi H. On finite groups with few non-normal subgroups [J]. Comm Algebra, 1999, 27(7) :3143-3151.
  • 4Gong Lti, Can Hongping, Chen Guiyun. Finite nilpotent groups having exactly four eonjugacy classes of non-normal subgroups[J]. Algebra Colloq, 2013, 20(4) :579-592.
  • 5La Haye R. Some expicit bounds in groups with a finite number of non-normal subgroups [J]. Comm Algebra, 1996, 25(12) :3803-3821.
  • 6Wails G. Trivial intersection groups[J]. Arch Math, 1979, 32(1):1-4.
  • 7Shi Huaguo, Chen Guiyun. A theorem of finite groups hav- ing only two non-normal subgroups[J]. J Pure and Applied Math, 2008, 23(1) :173-178.
  • 8Gorenstein D. Finite groups [ M ]. New York : Chelsea, 1980.
  • 9Isaacs I M. Finite group theory [M ]. Providence:American Mathematical Society, 2008.
  • 10Scott W R.Group theory[M]. Englewood Cliffs:Prentice-Hall, 1964.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部