摘要
在几何分析中,加权Hodge-Laplacian算子非常重要,在酉等价的意义下,它表现为初始度量的Schrdinger算子.另外,完备非紧流形上热容度问题是几何分析中的一个有趣的问题,在这方面亦有不少研究结果.文章首先给出了相应于初值的Schrdinger算子的加权热容度的定义;进一步,在权函数满足一定条件下,利用热核的性质以及Hlder不等式,得到加权热容度的上界估计.
In geometric analysis, the weighted Hodge-Laplacian operator is important and expresses as a Schr6dinger operator of the initial metric in the unitarily equivalent sense. On the other hand, the heat content question on a complete noncompact manifold is an interesting question in geometric analysis, there are many results in this direction. This paper firstly attempted to define the weighted heat content of the Schrodinger operator associated with a given initial value. Furthermore, by using the properties of the heat kernel and the Ho1der inequality, an upper bound estimate of the heat content under suitable conditions of the weighted function was established.
作者
张泽宇
周俞洁
王林峰
ZHANG Zeyu ZHOU Yujie WANG Linfeng(School of Sciences, Nantong University, Nantong 226019, China)
出处
《南通大学学报(自然科学版)》
CAS
2017年第2期78-81,共4页
Journal of Nantong University(Natural Science Edition)
基金
江苏省自然科学基金面上项目(BK20141235)