期刊文献+

一种新型旋转风能系统中聚热棚的模拟和实验研究

Numerical Simulation and Experimental Test on the Solar-energy-collecting Shed in a New Whirlwind Energy System
原文传递
导出
摘要 自然界中的尘卷风蕴含着较大能量,据此提出的一种新型类尘卷风旋转风能系统已证实能够形成稳定旋转风场。带有预旋导流叶片的太阳能聚热棚是该系统中提供热源产生旋转气流的核心部件。本文通过数值模拟结合实验研究的方法,改变聚热棚模型的尺寸参数(聚热棚半径、叶片入射角度)和加热温差,模拟得到不同条件下出口处旋转风场特征风速值的变化规律,选取出适合的聚热棚入射角度;此外,通过模拟和实验结果与相似理论综合分析得出该入射角度下聚热棚尺寸与特征风速值在不同加热温度下的曲线关系图,并给出符合火星气候条件的同类曲线,为合理预测该系统结构及运行参数,以及更进一步太空中的应用前景提供重要参考。 Dust devils in nature usually contain abundant wind energy, a new dust-devil-like whirlwind energy system has been proposed which could generate stable swirling wind. A circular solar-energy-collecting shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the shed. The effects of geometrical parameters(shed radius and air inflow incident angle) and temperature differences on the whirlwind characteristic velocities were evaluated by numerical simulation and experimental test. With the distribution and trend we could obtain the optimal incident angle. By simulating the cases with this incident angle, together with the similarity analysis, we could summarize the confines of the solar-energy-collecting shed size under different heating temperature differences, which could help to choose the optimal structural and operating parameters for the system. In addition, the confines obtained from the initial conditions on Mars also draw a future application prospect of the system working in space.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2017年第9期1980-1985,共6页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.11272250)
关键词 旋转风能系统 聚热棚 数值模拟 实验研究 相似理论 whirlwind energy system solar-energy-collecting shed numerical simulation expel'i-mental test similarity analysis
  • 相关文献

参考文献3

二级参考文献45

  • 1顾兆林,赵永志,郁永章,冯霄.尘卷风的形成、结构和卷起沙尘过程的数值研究[J].测绘科技动态,2003,61(6):751-760. 被引量:14
  • 2Arashi H, Naito H, Miura H. Hydrogen Production from High-Temperature Steam Electrolysis Using Solar Energy. Int. J. Hydrogen Energy, 1991, 16(9): 603-608.
  • 3Rachid M, Sofiane M. Electrolyte Process of Hydrogen Production by Solar Energy. Deaslination, 2007, 206:69- 77.
  • 4Padin J, Veziroglu T N, Shain A. Hybrid Solar High Temperature Hydrogen Production System. Int. J. Hydrogen Energy, 2000, 25:295-317.
  • 5Licht S. Solar Water Splitting to Generate Hydrogen Fuela Photothermal Electrochemical Analysis. Int. J. Hydrogen Energy, 2005, 30:459 -470.
  • 6Rosen M A. Energy and Exergy Analysis of Electrolytic Hydrogen Production. Int. J. Hydrogen Energy, 1995, 20(7): 547-553.
  • 7Ni M, Michae K H L, Dennis Y C L. Energy and Exergy Analysis of Hydrogen Production by Solid Oxide Steam Electrolyzer Plant. Int. J. Hydrogen Energy, 2007, 32: 4648- 4660.
  • 8Liu M Y, Yu B, Xu J M, Chen J. Thermodynamic Analysis of the Efficiency of High-Temperature Steam Electrol- ysis System for Hydrogen Production. Journal of Power Sources, 2008, 177:493-499.
  • 9Shin Y J, Park W, Chang J, et al. Evaluation of the High Temperature Electrolysis of Steam to Produce Hydrogen. Int. J. Hydrogen Energy, 2007, 32:1486-1491.
  • 10Lasich J B, Cleeve A, Kaila N,et al. Close Packed Cell Arrays for Dish Concentrotors. Hilton W, Village W. In: Proceedings of the IEEE First World Conference on Photovoltaic Energy Conversion. Hawwi: 1994. 1938-1941.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部