期刊文献+

面向不确定性影响源的社会网络影响力传播抑制方法 被引量:1

Uncertain Influence Sources Oriented Influence Blocking Maximization in Social Networks
下载PDF
导出
摘要 社会网络中影响力传播的有效抑制是社会网络影响力传播机制研究所关注的问题之一。该文针对未知影响传播源,或传播源信息具有不确定性的情况,提出面向不确定性影响源的影响力传播抑制问题。首先,为有效提高抑制算法的执行效率,讨论竞争线性阈值传播模型下影响源传播能力的近似估计方法,进而提出有限影响源情况下,期望抑制效果最大化的抑制种子集挖掘算法。其次,对于大尺寸不确定性影响源的情况,考虑算法运行效率和抑制效果之间的有效折中,提出基于抽样平均近似的期望抑制效果最大化的抑制种子集挖掘算法。最后,在真实的社会网络数据集上,通过实验测试验证了所提出方法的有效性。 Influence blocking maximization is currently a focused issue in the research area of social networks. This paper considers the issue of influence blocking maximization with uncertain negative influence sources. First, in order to increase efficiency of blocking seeds mining algorithms, the approximate estimation method of influence propagation of negative seeds under the competitive linear threshold model is discussed. Based on the estimation, a blocking seeds mining algorithm for finite uncertain negatively influence sources is proposed to maximize expected influence blocking utility. Second, for the case of huge amount of negatively influence sources with uncertainty, a blocking seeds mining algorithm based on the sampling average approximation approach is proposed to balance the tradeoffs between scalability and effectiveness of the influence blocking maximization. Finally, experiments are carried on real data sets of social networks to verify the feasibility and scalability of the proposed algorithms.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第9期2063-2070,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61562091 61472345) 云南省应用基础研究计划 (2014FA023 2016FB110) 云南大学中青年骨干教师培养计划项目 云南大学青年英才培育计划(XT412003) 云南省软件工程重点实验室开放项目(2012SE303 2012SE205)~~
关键词 社会网络 不确定性影响源 影响力传播抑制 竞争线性阈值模型 抽样平均近似 Social networks Uncertain influence sources Influence blocking maximization Competitive linear threshold model Sampling average approximation
  • 相关文献

参考文献4

二级参考文献127

  • 1WATTS D J and STROGATZ S H.Collective dynamics of 'small-world' networks[J].Nature,1998,393(6684):440-442.
  • 2BARABASI A L and ALBERT R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.
  • 3SAITO K,NAKANA R,and KIMURA M.Prediction of information diffusion probabilities for independent cascade model[J].Lecture Notes in Computer Science,2008,5179:67-75.
  • 4TANG J,SUN J,and YANG Z.Social influence analysis in large-scale networks[C].Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,New York,USA,2009:807-816.
  • 5GOYAL A,BONCHI F,and LASKHMANAN L.Learning influence probabilities in social networks[C].Proceedings of the Third ACM International Conference on Web Search & Data Mining,New York,USA,2010:241-250.
  • 6WANG C,TANG J,SUN J,et al.Dynamic social influence analysis through time-dependent factor graphs[C].Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining,Washington,DC,USA,2011:239-246.
  • 7DOMIGOS P and RICHARDSON M.Mining the network value of customers[C].Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Francisco,USA,2001:57-66.
  • 8RICHARDSON M and DOMINGOS P.Mining knowledge- sharing sites for viral marketing[C].Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Alberta,Canada,2002:61-70.
  • 9KEMPE D,KLEINBERG J,and TARDOS E.Influential nodes in a diffusion model for social networks[J].International Colloquium on Automata,Languages and Programming,2005,32:1127-1138.
  • 10KEMPE D,KLEINBERG J,and TARDOS E.Maximizing the spread of influence in a social network[C].Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Washington,USA,2003:137-146.

共引文献131

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部