期刊文献+

一种VideoSAR动目标阴影检测方法 被引量:11

Approach to Moving Targets Shadow Detection for VideoSAR
下载PDF
导出
摘要 在高帧率的视频合成孔径雷达(VideoSAR)成像模式获得的图像序列中,多普勒频移使运动目标在实际位置留下阴影,且相邻帧图像具有很强相关性。该文针对上述现象提出一种VideoSAR图像中动目标阴影检测的方法。首先,对每帧图像通过结合尺度不变特征变换(SIFT)和随机抽样一致性(RANSAC)算法实现配准并进行背景补偿,再采用CattePM模型抑制相干斑噪声。然后通过Tsallis灰度熵的最大化阈值分割方法自动分离目标和背景,获得二值图像。最后,对相邻多帧图像背景建模并差分,再结合三帧间差分法提取动目标阴影,结果标记至原帧图像相应位置。基于美国Sandia实验室公布的VideoSAR成像片段,实现了多个移动车辆的检测,验证了所提算法的有效性。 In the image sequence obtained by the high frame rate Video Synthetic Aperture Radar (VideoSAR) mode, the Doppler shift results in some shadows of the moving targets in their actual position, and a strong correlation exists between adjacent frames. Based on the above rationale, this paper proposes an approach to detecting moving targets' shadow in VideoSAR imagery. First, the Scale-Invariant Feature Transform (SIFT) with RANdom SAmple Consensus (RANSAC) registration algorithm is used to compensate for the change of background of each frame, and the CattePM model is employed to suppress the speckle noise effectively. Then, in order to separate the targets and the background and generate binary images automatically, a threshold segmentation algorithm, called maximizing the Tsallis entropy, is applied. Finally, shadow detection is accomplished by the background difference with three frame difference method, and the detection results are marked on the corresponding position in the original frame. Experimental results utilizing the VideoSAR imaging fragment published by Sandia National Laboratories show that multiple moving vehicles are detected effectively, hence the validity of the approach is demonstrated.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第9期2197-2202,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61671240) 江苏省自然科学基金青年基金(BK20150730) 中央高校基本科研业务费(NZ2016105) 南京航空航天大学研究生创新基地(实验室)开放基金资助项目(kfjj20170401)~~
关键词 视频合成孔径雷达 动目标阴影检测 图像配准 阈值分割 帧间差分 Video Synthetic Aperture Radar (VideoSAR) Moving target shadow detection Image registration Threshold segmentation Frame difference
  • 相关文献

参考文献4

二级参考文献77

  • 1付琨,匡纲要,郁文贤.高分辨率SAR图像地物分类算法研究[J].电子学报,2001,29(z1):1820-1823. 被引量:6
  • 2郑明洁,杨汝良.一种改进的DPCA运动目标检测方法[J].电子学报,2004,32(9):1429-1432. 被引量:27
  • 3许东,安锦文.一种基于光流拟和的航拍视频图像全局运动估算方法[J].航空学报,2006,27(1):94-97. 被引量:8
  • 4Li Z Y and Wu J J. Dual-Channel dpca technique in bi-static forward-looking SAR for moving target detection andimaging [ C]. Radar ( Radar) , 2011 IEEE CIE Interna-tional Conference, Oct. 24-27 , 2011,942-945.
  • 5Zhang Y,Zhang Y H, Gu X. Improved stap algorithmbased on apes [ J] . Journal of Systems Engineering andElectronics, 2011, 22(3):387-392.
  • 6Herbert, G. M. Clutter modelling for space-time adaptiveprocessing in airborne radar [ J ]. Radar,Sonar & Navi-gation, IET, 2010(4) :178-186.
  • 7Chapin, E. Airborne along-track interferometry for GMTI[J]. Aerospace and Electronic Systems Magazine, IEEE,2009(24) :13-18.
  • 8S. Barbarossa. Detection and imaging of moving objectswith synthetic aperture radar [ J] . Part I ; Optional De-tection and Parameter Estimation Theory, IEE Pro. -f,1922, (1):79-88.
  • 9Chen X L, Huang Y. Sea clutter suppression and movingtarget detection method based on clutter map cancellationin frft domain [ J]. Radar ( Radar),2011 IEEE CIE In-ternational Conference, Oct. 24-27 , 2011 , 438-441.
  • 10Esch T, Schenk A, Ullmann T, Thiel M, Roth A, DechS. Characterization of land cover types in terraSAR-X im-ages by combined analysis of speckle statistics and inten-sity information [ J ]. IEEE Transaction on Geoscienceand Remote Sensing, 2011,49(6) : 1911-1925.

共引文献47

同被引文献36

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部