期刊文献+

混合多目标骨干粒子群优化算法在污水处理过程优化控制中的应用 被引量:12

Optimal control of wastewater treatment process using hybrid multi-objective barebones particle swarm optimization algorithm
下载PDF
导出
摘要 通过对污水生化处理过程的分析,选取能耗和罚款最低为优化目标,建立污水生化处理过程多目标优化控制模型。为了提高Pareto最优解集的收敛性和多样性,提出一种基于Pareto支配和分解的混合多目标骨干粒子群优化算法(HBBMOPSO)。该方法采用带自适应惩罚因子的分解方法选取个体引导者,采用Pareto支配和拥挤距离法维护外部档案和选取全局引导者。此外,采用精英学习策略增强粒子跳出局部Pareto前沿的能力。最后,将HBBMOPSO与自组织模糊神经网络预测模型和自组织控制器相结合,实现污水生化处理过程溶解氧和硝态氮设定值的动态寻优、智能决策和底层跟踪控制。利用国际基准仿真平台BSM1进行实验验证,结果表明所提HBBMOPSO方法在保证出水水质参数达标的前提下,能够有效降低污水处理过程的能耗。 Through analysis of biological wastewater treatment process(WWTP), a multi-objective optimal control strategy was developed with targets of minimizing both energy consumption and amercement. A hybrid multi-objective barebones particle swarm optimization(HBBMOPSO) algorithm based on Pareto dominance and decomposition was proposed to improve convergence and diversity of optimized set of Pareto solutions. In HBBMOPSO, selection of personal leaders was determined from self-adaptive penalty factor decomposition while maintenance of external dossiers and selection of global leaders were determined from dominance and crowded distance. Furthermore, elitism learning strategy was adopted to facilitate particle escaping from local Pareto fronts. Finally, HBBMOPSO was combined with self-organizing fuzzy nerve network modeler and controller to realize dynamic optimization, intelligent decision, and background monitoring on dissolved oxygen and nitrate nitrogen in biological WWTP. Experimental study on international standardized simulator platform BSM1 showed that HBBMOPSO method can effectively reduce energy consumption under the premise of ensuring effluent to meet quality standard.
出处 《化工学报》 EI CAS CSCD 北大核心 2017年第9期3511-3521,共11页 CIESC Journal
基金 国家自然科学基金重点项目(61533002)~~
关键词 污水 优化 过程控制 粒子群 分解 wastewater optimization process control particle swarm decomposition
  • 相关文献

参考文献3

二级参考文献14

  • 1Copp J.The cost simulation benchmark: Description and simulator manual[M].Luxembourg: Office for Publications of the European Community,2002: 3-4.
  • 2Piotrowski R,Brdys M A,Konarczak K,et al.Hierarchical dissolved oxygen control for activated sludge processes[J].Control Engineering Practice,2008,16(1): 114-131.
  • 3Beraud B,Steyer J P.Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms[J].Water Science & Technology,2007,56(9): 109-116.
  • 4Hopfield J,Tank D.Neural computation of decisions in optimization problems[J].Biological Cybernetics,1985,52: 141-152.
  • 5Walsh M,Malley M.Augmented Hopfield network for unit commitment and economic dispatch[J].IEEE Trans on Power Systems,1997,12(4): 1765-1774.
  • 6Dieu V,Ongsakul W.Enhanced augmented Lagrangian Hopfield network for unit commitment[J].IEEE Proc of Generation,Transmission and Distribution,2006,153(6): 624-632.
  • 7Ayesa E,Sota A,Grau P,et al.Supervisory control strategies for the new WWTP of Galindo-Bilbao: The long run from the conceptual design to the full-scale experimental validation[J].Water Science and Technology,2006,53(4/5): 193-201.
  • 8张平,苑明哲,王宏.前置反硝化污水生化处理过程优化控制[J].信息与控制,2008,37(1):113-118. 被引量:12
  • 9乔俊飞,韩红桂.神经网络结构动态优化设计的分析与展望[J].控制理论与应用,2010,27(3):350-357. 被引量:20
  • 10史雄伟,乔俊飞,苑明哲.基于改进粒子群优化算法的污水处理过程优化控制[J].信息与控制,2011,40(5):698-703. 被引量:17

共引文献44

同被引文献66

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部