期刊文献+

合成温度对全梯度正极材料LiNi_(0.7)Co_(0.15)Mn_(0.15)O_2的结构和电化学性能影响(英文) 被引量:1

Effect of Synthesis Temperature on the Structural and Electrochemical Properties of a Full Concentration Gradient LiNi_(0.7)Co_(0.15)Mn_(0.15)O_2 Cathode Material
下载PDF
导出
摘要 通过控制结晶法和浓度梯度进料的方式制备了Ni、Co和Mn三元素组分含量呈全梯度分布的类球形Ni_(0.7)Co_(0.15)Mn_(0.15)(OH)_2前驱体,与LiOH·H_2O均匀混合并焙烧后获得LiNi_(0.7)Co_(0.15)Mn_(0.15)O_2正极材料,系统研究了不同焙烧温度对材料Ni、Co和Mn三元素扩散情况、晶体结构及电化学性能的影响规律。通过能谱仪(EDXS)分析不同焙烧温度下材料颗粒中Ni、Co、Mn三元素的扩散程度。研究结果表明,在800℃下焙烧得到的正极材料梯度分布特征明显且电化学性能最佳,首次放电比容量为186.1 m Ah·g^(-1)(2.8~4.3 V,0.2C),2C大倍率充放电条件下循环200次后容量保持率为90.1%。这种材料兼具高比容量及良好的循环稳定性,可以用作下一代高能量密度锂离子电池正极材料。 Spherical Ni0.TCO0.15Mn0.15(OH)2 precursor with a full concentration gradient (FCG) of Ni, Co and Mn elements was obtained via co-precipitation method. The precursor was evenly mixed with LiOH "H20 and then sintered at 750-900℃ for 12 h in oxygen to synthesize FCG-LiNi0.TCO0.15Mn0.15O2 cathode material with the Ni rich in core and Mn rich in the outer layer. The diffusion of Ni, Co, and Mn under different calcination temperatures led to various elements homogeneity, and was analyzed by energy-dispersive X-ray spectroscopy (EDXS). Then, the electrochemical properties of samples were investigated by the charge-discharge test and electrochemical impedance spectroscopy (EIS) test. The results indicate that the cathode material sintered at 800℃ has an obvious concentration-gradient distribution with a shell of LiNi0.52Co0.24Mn0.24O2 and exhibits the optimal electrochemical performance. Under the voltage range 2.8-4.3 V , it deliveres an initial discharge of 186.1 mAh·g^-1 at a charge-discharge rate of 0.2C, and shows an excellent capacity retention of 90.1% after 200 cycles at a high rate of 2C.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2017年第9期1537-1546,共10页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.51602352)资助项目
关键词 锂离子电池 正极材料 全梯度 元素扩散 Lithium-ion battery cathode material full concentration-gradient element diffusion
  • 相关文献

参考文献5

二级参考文献137

  • 1ZHANGPing(杨平) ZHANGChuan-Fu(张传福) DAIXi(戴曦) etal.Zhongguo Youse Jinshu Xuebao,2009,19:101-107.
  • 2WENJian-Wu(温建武) TENGYuan-Cheng(滕元成) LIXiang-Yu(李香玉) etal.Dianzi Yuanjian Yu Cailiao,2009,28(12):30-32.
  • 3Park S H, Sun Y K. J. Power Sources, 2003,161:119-121.
  • 4Xu C Q, Tian Y W , Zhai Y C, et al. Mater. Chem. Phys., 2006,98:532-538.
  • 5Song D, Ikuta H, Uchida T, et al. Solid State Ionics., 1999, 117:151-157.
  • 6Yabuuehi N, Ohzuku T. J. Power Sources, 2003,119-121: 171-176.
  • 7Kang S H, Amine K. J. Power Sources, 2003,119:150-155.
  • 8Xia H, Tang S B, Lua L. J. Alloys Compd., 2008,449:296-299.
  • 9WANGHai-Yan(王海燕) TANGAi-Dong(唐爱东) HUANGKe-Long(黄可龙) etal.Wuji Huaxue Xuebao,2008,24:593-599.
  • 10Amatucci G G, Tarascon J M, Klein L C. Solid State lonics, 1996,83:167-173.

共引文献25

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部