期刊文献+

公开商品评价对销售的影响研究——产品评价的策略性展示 被引量:1

Integrating Multiple Opinions: Strategic Display of Product Ratings
下载PDF
导出
摘要 如今,很多互联网零售商允许消费者在其网站上作出产品评分。一些卖方只公布平均评分,而其他一些卖方则选择同时公布平均评分和评分分布。在本文中,我们通过博弈论模型框架来探讨这些卖方的动机策略。通过分析评分分布对产品售价和销售额的影响,我们着力刻画公布评分分布使卖方获利的条件。结果表明,价格随着评分方差的上升而上升,而需求则可能上升也可能下降。因此,随着方差的变动,利润呈U型变化。然后,我们从固定价格市场(电影市场)收集数据,并找出实证证据来支持我们的理论预测。 Many Internet retailers today allow consumers to post product ratings on their websites. While some sellers publish only the average rating, others choose to display both the average rating and the distribution of ratings. In this paper, we first provide a theoretical model to examine when it is optimal for sellers to disclose the distribution of ratings. In our model, we allow both the average rating and the distribution of the ratings--in particular, the variance--to reflect underlying product characteristics. Our findings suggest that price increases with the variance of ratings, while demand could either increase or decrease with the variance. As a result, profit is U-shaped in the variance. A seller therefore should publicize the distribution of ratings when expecting his product to obtain an extreme variance, either low or high, as opposed to an intermediate variance. We then gather data from a fixed-price market (the motion picture industry) and a flexible-price market (the computer product industry), and find empirical evidence that provides support for our theoretical predictions.
作者 孙佳圣
出处 《中国软科学》 CSSCI CSCD 北大核心 2017年第8期184-192,共9页 China Soft Science
关键词 消费决策 方差分析 产品评分 网络零售 consumption decision analysis of variance product rating internet retail
  • 相关文献

参考文献6

二级参考文献161

  • 1殷国鹏,莫云生,陈禹.利用社会网络分析促进隐性知识管理[J].清华大学学报(自然科学版),2006,46(z1):964-969. 被引量:94
  • 2温忠麟,侯杰泰,张雷.调节效应与中介效应的比较和应用[J].心理学报,2005,37(2):268-274. 被引量:3115
  • 3Kumar N, Benbasat I. The influence of recommendations and consumer reviews on evaluations of websites [ J ]. Information Systems Research, 2006, 17 (4) : 425 - 439.
  • 4Dellarocas C. The digitization of word of mouth : Promise and challenges of online feedback mechanisms [ J ]. Management Science, 2003, 49(10) : 1407 - 1424.
  • 5Park D H, Lee J, Han I. The effect of on-line consumer reviews on consumer purchasing intention : The moderating role of involvement[ J]. International Journal of Electronic Commerce, 2007, 11 (4) : 125 - 148.
  • 6Zhang Z. Weighing stars : Aggregating online product reviews for intelligent e-commerce applications [ J ]. IEEE Intelligent Systems, 2008, 23 (5) - 42 - 49.
  • 7Hu N, Pavlou P A, Zhang J. Can online reviews reveal a product' s true quality? Empirical findings and analytical modeling of online word-of-mouth communication[ C ]/! Proceedings of the 7th ACM Conference on Electronic Commerce, Ann Arbor, Michigan, USA : Association for Computing Machinery, 2006 : 324 - 330.
  • 8Liu Y, Huang X J, An A J, et al. Modeling and predicting the helpfulness of online reviews [ C l// Procedings of the 8th IEEE International Conference on Data Mining, Washington. DC, USA: IEEE Computer Society, 2008:443 -452.
  • 9Ghose A, Ipeiortis P G. Designing novel review ranking systems : Predicting the usefulness and impact of reviews [ C ]/! Pro- ceedings of the 9th ACM Conference on Electronic Commerce, Minneapolis, MN, USA: Association for Computing Machin- ery, 2007:303-310.
  • 10Otterbacher J. "Helpfulness" in online communities: A measure of message quality [ C ]// Proceedings of the 27th Interna-tional Conference on Human Factors in Computing Systems, Boston, MA, USA: Association for Computing Machinery, 2009 : 955 - 964.

共引文献319

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部