期刊文献+

基于LMD_SVD的矿山微震与爆破信号特征提取分析 被引量:1

Feature Extraction Analysis of Mine Microseism and Blast Based on LMD_SVD
下载PDF
导出
摘要 针对矿山微震与爆破信号难以识别的问题,提出一种基于局部均值分解(LMD)和奇异值分解(SVD)的微震信号特征提取方法。首先对矿山微震信号和爆破信号进行LMD分解,将多分量的调频信号分解成一系列频率由高到低的乘积函数(PF)分量;其次,借助相关系数和方差贡献率筛选出包含信号主要信息的PF分量;最后利用SVD计算所选的PF分量构成矩阵奇异值,以此作为区分矿山微震与爆破信号的特征向量。实验结果表明,LMD和SVD相结合的特征提取方法能准确、有效地提取矿山微震和爆破信号特征,为信号识别研究提供了一种新方法。 A method of microseismic signal feature extraction based on local mean decomposition (I.MD) and singular value de composition (SVD) is proposed for the identification of microseismic and blasting signals in mines. Firstly,the mine microseis mie signal and blasting signal are decomposed by LMD, and the FM multi-component signal is decomposed into a series of fre quency from high to low product function (PF) components~ secondly, the PF component contains the main information signal are selected by correlations and variance contribution ratios, finally the singular values of selected PF component matrix are eal culated by SVD, which are used as a characteristic vector to distinguish the microseismic and blasting signals of the mine. The experimental results show that the feature extraction method combined with LMD and SVD can accurately and effectively mine the characteristics of microseismic and explosion signals, and provides a new method for signal recognition research.
作者 何玉凤
出处 《软件导刊》 2017年第9期28-31,共4页 Software Guide
关键词 局部均值分解 奇异值分解 微震信号 方差贡献率 特征向量 local mean decomposition singular value decomposition microseismic signal variance contribution rate feaiure vector
  • 相关文献

参考文献7

二级参考文献106

共引文献214

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部